Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036002452> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3036002452 endingPage "A57" @default.
- W3036002452 startingPage "A57" @default.
- W3036002452 abstract "Abstract Liquid biopsy holds great promise in noninvasive diagnosis of cancers through detecting minute amounts of cell-free DNA released from cancer cells in non-solid biologic tissue such as peripheral blood. A critical bottleneck in developing liquid biopsy methods is the limited accuracy of current next-generation sequencing technology (NGS), evidenced by its high error rate (0.1%-1%, as of 2018). Through mathematical modeling of NGS errors, we have recently published a method to computationally suppress the current NGS error rate to between 10−5 and 10−4, two orders of magnitude lower than general reports. However, this error rate is a product of both PCR errors and instrument (i.e., sequencer) errors, and it is currently unknown how to separate these error sources. In this work, we developed a novel computational algorithm to precisely measure the errors caused by sequencers. By using 12 publicly available datasets from 10 sequencing centers (in America, Europe, and Asia), we discovered highly reproducible patterns of sequencer errors, including: 1) the overall sequencer error rate is 10−5; 2) at the flow-cell level, error rates are elevated in the bottom surface; 3) almost all flow cells have a small fraction of random tiles with a dramatically elevated error rate; 4) the elevated error rates appear to be enriched in some reaction cycles; 5) removal of these reaction cycles yields 5-fold lower error rates at some genomic loci, so that A>C, A>T, and C>G error types have error rates close to 10−6; and 6) sequencer errors have a pattern markedly distinct from PCR errors. We have implemented the above observations into a general-purpose algorithm, termed CleanDeepSeq2, to computationally suppress sequencer errors and to also effectively monitor sequencer anomalies. CleanDeepSeq2 was engineered for efficiency so that a dataset with ultra-deep sequencing (1,000,000X depth) can be processed in 1.5N minutes on a single CPU core, where N is the number of target regions. Similarly, WES (100X) and WGS (~30X) datasets can be processed in under 1 CPU hour in order to monitor instrument performance. Overall, we have developed a computational method that for the first time enabled precise measurement of sequencer errors. Our study revealed novel insights on sequencer errors that can lead to improved instrumentation, NGS chemistry, and ultimately higher DNA sequencing fidelity. In addition, our developed software can efficiently suppress sequencer errors in addition to previously discovered error sources. Citation Format: Eric Davis, Rain Sun, Ying Shao, Yanling Liu, Heather L. Mulder, Stephen V. Rice, John Easton, Jinghui Zhang, Xiaotu Ma. Uncovering instrument errors in next-generation sequencing by CleanDeepSeq2 [abstract]. In: Proceedings of the AACR Special Conference on Advances in Liquid Biopsies; Jan 13-16, 2020; Miami, FL. Philadelphia (PA): AACR; Clin Cancer Res 2020;26(11_Suppl):Abstract nr A57." @default.
- W3036002452 created "2020-06-25" @default.
- W3036002452 creator A5016267239 @default.
- W3036002452 creator A5019581835 @default.
- W3036002452 creator A5022012433 @default.
- W3036002452 creator A5025610733 @default.
- W3036002452 creator A5028789686 @default.
- W3036002452 creator A5033767117 @default.
- W3036002452 creator A5036555866 @default.
- W3036002452 creator A5052408344 @default.
- W3036002452 creator A5073492643 @default.
- W3036002452 date "2020-06-01" @default.
- W3036002452 modified "2023-10-03" @default.
- W3036002452 title "Abstract A57: Uncovering instrument errors in next-generation sequencing by CleanDeepSeq2" @default.
- W3036002452 doi "https://doi.org/10.1158/1557-3265.liqbiop20-a57" @default.
- W3036002452 hasPublicationYear "2020" @default.
- W3036002452 type Work @default.
- W3036002452 sameAs 3036002452 @default.
- W3036002452 citedByCount "0" @default.
- W3036002452 crossrefType "journal-article" @default.
- W3036002452 hasAuthorship W3036002452A5016267239 @default.
- W3036002452 hasAuthorship W3036002452A5019581835 @default.
- W3036002452 hasAuthorship W3036002452A5022012433 @default.
- W3036002452 hasAuthorship W3036002452A5025610733 @default.
- W3036002452 hasAuthorship W3036002452A5028789686 @default.
- W3036002452 hasAuthorship W3036002452A5033767117 @default.
- W3036002452 hasAuthorship W3036002452A5036555866 @default.
- W3036002452 hasAuthorship W3036002452A5052408344 @default.
- W3036002452 hasAuthorship W3036002452A5073492643 @default.
- W3036002452 hasConcept C103088060 @default.
- W3036002452 hasConcept C11413529 @default.
- W3036002452 hasConcept C126513998 @default.
- W3036002452 hasConcept C149635348 @default.
- W3036002452 hasConcept C154945302 @default.
- W3036002452 hasConcept C2780513914 @default.
- W3036002452 hasConcept C40969351 @default.
- W3036002452 hasConcept C41008148 @default.
- W3036002452 hasConcept C51679486 @default.
- W3036002452 hasConcept C54355233 @default.
- W3036002452 hasConcept C552990157 @default.
- W3036002452 hasConcept C70712619 @default.
- W3036002452 hasConcept C70721500 @default.
- W3036002452 hasConcept C86803240 @default.
- W3036002452 hasConceptScore W3036002452C103088060 @default.
- W3036002452 hasConceptScore W3036002452C11413529 @default.
- W3036002452 hasConceptScore W3036002452C126513998 @default.
- W3036002452 hasConceptScore W3036002452C149635348 @default.
- W3036002452 hasConceptScore W3036002452C154945302 @default.
- W3036002452 hasConceptScore W3036002452C2780513914 @default.
- W3036002452 hasConceptScore W3036002452C40969351 @default.
- W3036002452 hasConceptScore W3036002452C41008148 @default.
- W3036002452 hasConceptScore W3036002452C51679486 @default.
- W3036002452 hasConceptScore W3036002452C54355233 @default.
- W3036002452 hasConceptScore W3036002452C552990157 @default.
- W3036002452 hasConceptScore W3036002452C70712619 @default.
- W3036002452 hasConceptScore W3036002452C70721500 @default.
- W3036002452 hasConceptScore W3036002452C86803240 @default.
- W3036002452 hasIssue "11_Supplement" @default.
- W3036002452 hasLocation W30360024521 @default.
- W3036002452 hasOpenAccess W3036002452 @default.
- W3036002452 hasPrimaryLocation W30360024521 @default.
- W3036002452 hasRelatedWork W1483251870 @default.
- W3036002452 hasRelatedWork W2032711662 @default.
- W3036002452 hasRelatedWork W2602845639 @default.
- W3036002452 hasRelatedWork W2752232656 @default.
- W3036002452 hasRelatedWork W2914466374 @default.
- W3036002452 hasRelatedWork W2938523556 @default.
- W3036002452 hasRelatedWork W3122016707 @default.
- W3036002452 hasRelatedWork W3202060848 @default.
- W3036002452 hasRelatedWork W4249076795 @default.
- W3036002452 hasRelatedWork W3088570659 @default.
- W3036002452 hasVolume "26" @default.
- W3036002452 isParatext "false" @default.
- W3036002452 isRetracted "false" @default.
- W3036002452 magId "3036002452" @default.
- W3036002452 workType "article" @default.