Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036054034> ?p ?o ?g. }
- W3036054034 endingPage "111288" @default.
- W3036054034 startingPage "111278" @default.
- W3036054034 abstract "The problem of single image rain removal has attracted tremendous attention as the blurry images caused by rain streaks can degrade the performance of many computer vision algorithms. Although deep learning based de-raining methods have achieved a significant success, there are still unresolved issues in terms of the performance. In this work, we propose a novel recurrent attention dense network (RADN) for single image de-raining. In RADN, a region-level attention module is first utilized to identify rain streaks regions for the subsequent removal task. As rain streaks have different sizes and shapes, a modified densely connected convolutional network (DenseNet) with dilation convolutions and reduced channels is developed for an effective feature representation. The rain streaks are removed stage by stage and a Gate Recurrent Unit (GRU) is incorporated to deliver useful information from previous stages to later stages for a better performance. Qualitative and quantitative evaluations on both synthetic and real-world datasets demonstrate that the proposed approach can achieve a remarkable performance in comparison with the state-of-the-art methods for single image rain removal." @default.
- W3036054034 created "2020-06-25" @default.
- W3036054034 creator A5016051165 @default.
- W3036054034 creator A5019267814 @default.
- W3036054034 creator A5046317936 @default.
- W3036054034 creator A5059392818 @default.
- W3036054034 creator A5065814740 @default.
- W3036054034 creator A5077686672 @default.
- W3036054034 creator A5085022758 @default.
- W3036054034 date "2020-01-01" @default.
- W3036054034 modified "2023-10-16" @default.
- W3036054034 title "Recurrent Attention Dense Network for Single Image De-Raining" @default.
- W3036054034 cites W1965572510 @default.
- W3036054034 cites W2017416107 @default.
- W3036054034 cites W2054604489 @default.
- W3036054034 cites W2119535410 @default.
- W3036054034 cites W2121396509 @default.
- W3036054034 cites W2133665775 @default.
- W3036054034 cites W2154621477 @default.
- W3036054034 cites W2209874411 @default.
- W3036054034 cites W2288122362 @default.
- W3036054034 cites W2331128040 @default.
- W3036054034 cites W2466666260 @default.
- W3036054034 cites W2509784253 @default.
- W3036054034 cites W2559264300 @default.
- W3036054034 cites W2613155248 @default.
- W3036054034 cites W2737207197 @default.
- W3036054034 cites W2740982616 @default.
- W3036054034 cites W2771617895 @default.
- W3036054034 cites W2776107444 @default.
- W3036054034 cites W2778532031 @default.
- W3036054034 cites W2798401637 @default.
- W3036054034 cites W2798744505 @default.
- W3036054034 cites W2883090707 @default.
- W3036054034 cites W2884068670 @default.
- W3036054034 cites W2899755065 @default.
- W3036054034 cites W2905015538 @default.
- W3036054034 cites W2910832120 @default.
- W3036054034 cites W2930755307 @default.
- W3036054034 cites W2962793481 @default.
- W3036054034 cites W2963446712 @default.
- W3036054034 cites W2963604034 @default.
- W3036054034 cites W2963800716 @default.
- W3036054034 cites W2964212750 @default.
- W3036054034 cites W2970934331 @default.
- W3036054034 cites W2980047233 @default.
- W3036054034 cites W2981380309 @default.
- W3036054034 doi "https://doi.org/10.1109/access.2020.3003126" @default.
- W3036054034 hasPublicationYear "2020" @default.
- W3036054034 type Work @default.
- W3036054034 sameAs 3036054034 @default.
- W3036054034 citedByCount "2" @default.
- W3036054034 countsByYear W30360540342021 @default.
- W3036054034 countsByYear W30360540342023 @default.
- W3036054034 crossrefType "journal-article" @default.
- W3036054034 hasAuthorship W3036054034A5016051165 @default.
- W3036054034 hasAuthorship W3036054034A5019267814 @default.
- W3036054034 hasAuthorship W3036054034A5046317936 @default.
- W3036054034 hasAuthorship W3036054034A5059392818 @default.
- W3036054034 hasAuthorship W3036054034A5065814740 @default.
- W3036054034 hasAuthorship W3036054034A5077686672 @default.
- W3036054034 hasAuthorship W3036054034A5085022758 @default.
- W3036054034 hasBestOaLocation W30360540341 @default.
- W3036054034 hasConcept C108583219 @default.
- W3036054034 hasConcept C114614502 @default.
- W3036054034 hasConcept C115961682 @default.
- W3036054034 hasConcept C138885662 @default.
- W3036054034 hasConcept C153180895 @default.
- W3036054034 hasConcept C154945302 @default.
- W3036054034 hasConcept C17744445 @default.
- W3036054034 hasConcept C199539241 @default.
- W3036054034 hasConcept C2776359362 @default.
- W3036054034 hasConcept C2776401178 @default.
- W3036054034 hasConcept C2780757906 @default.
- W3036054034 hasConcept C31972630 @default.
- W3036054034 hasConcept C33923547 @default.
- W3036054034 hasConcept C41008148 @default.
- W3036054034 hasConcept C41895202 @default.
- W3036054034 hasConcept C52622490 @default.
- W3036054034 hasConcept C81363708 @default.
- W3036054034 hasConcept C94625758 @default.
- W3036054034 hasConceptScore W3036054034C108583219 @default.
- W3036054034 hasConceptScore W3036054034C114614502 @default.
- W3036054034 hasConceptScore W3036054034C115961682 @default.
- W3036054034 hasConceptScore W3036054034C138885662 @default.
- W3036054034 hasConceptScore W3036054034C153180895 @default.
- W3036054034 hasConceptScore W3036054034C154945302 @default.
- W3036054034 hasConceptScore W3036054034C17744445 @default.
- W3036054034 hasConceptScore W3036054034C199539241 @default.
- W3036054034 hasConceptScore W3036054034C2776359362 @default.
- W3036054034 hasConceptScore W3036054034C2776401178 @default.
- W3036054034 hasConceptScore W3036054034C2780757906 @default.
- W3036054034 hasConceptScore W3036054034C31972630 @default.
- W3036054034 hasConceptScore W3036054034C33923547 @default.
- W3036054034 hasConceptScore W3036054034C41008148 @default.
- W3036054034 hasConceptScore W3036054034C41895202 @default.
- W3036054034 hasConceptScore W3036054034C52622490 @default.
- W3036054034 hasConceptScore W3036054034C81363708 @default.