Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036098966> ?p ?o ?g. }
- W3036098966 endingPage "119761" @default.
- W3036098966 startingPage "119761" @default.
- W3036098966 abstract "Data on the chromium stable isotope composition of planetary reservoirs have the potential to provide information about core formation, partial melting and conditions of the Moon formation. In order to detect the small Cr isotopic differences between various reservoirs in the solar system, their compositions need to be precisely constrained. The current BSE value of δ53Cr = −0.11 ± 0.06‰ (Sossi et al., 2018) cannot resolve differences between achondrites, (Vesta δ53Cr = −0.17 ± 0.05‰) and chondrites (carbonaceous δ53Cr = −0.12 ± 0.05‰; ordinary δ53Cr = −0.11 ± 0.04‰). The composition of the bulk silicate Earth (BSE) is often used as a reference point for comparisons to other planetary reservoirs. However, past attempts to estimate the Cr isotopic composition of the BSE have been unable to provide a well-constrained BSE value. Traditional methods, using mantle peridotites, are affected by the susceptibility of Cr isotopes to fractionation during metasomatism. More recently, the Cr isotope composition of the BSE has been calculated using komatiites, in addition to mantle peridotites, to produce a more precise value (Sossi et al., 2018). In order to constrain the BSE composition to a higher precision, the δ53Cr of remarkably fresh komatiite lava flows from three localities, ranging in age from 2.7 Ga to 89 Ma, have been investigated in detail. These included the Tony's Flow in the Belingwe Greenstone Belt, Zimbabwe, the Victoria's Lava Lake in Fennoscandia, and komatiites from Gorgona Island in Colombia. In the komatiites studied, a range in Cr isotopic compositions was found, from δ53Cr = −0.16 ± 0.02 to −0.01 ± 0.02‰. We show that the high degrees of partial melting that produced the komatiites, did not result in Cr isotopic fractionation between the komatiitic melt and mantle residue. However, limited Cr isotopic fractionation is found to be a consequence of komatiite lava differentiation. For the lava flows with high Mg content and high Cr2+/ƩCrTOT (the molar ratio of Cr2+/(Cr2+ + Cr3+)), such as Tony's Flow and Gorgona, δ53Cr increases in the evolved portion of the magma during olivine fractionation due to the preferential inclusion of light Cr into olivine. Other flows with lower MgO content do not show this behaviour because a smaller fraction of the Cr is contained in olivine. The effects of fractional crystallisation must, therefore, be taken into account when calculating the Cr isotopic composition of the source of komatiite lavas. The weighted average of δ53Cr for the komatiite lavas analysed is −0.12 ± 0.04‰ (n = 5) and represents our best estimate for the Cr isotopic composition of the BSE. It agrees with the previous estimates, while providing an improvement to the uncertainty. There is no resolvable difference between this value and that of chondritic meteorites. Our data also indicate that the δ53Cr of the mantle has been constant since at least the Archean." @default.
- W3036098966 created "2020-06-25" @default.
- W3036098966 creator A5019827486 @default.
- W3036098966 creator A5029350428 @default.
- W3036098966 creator A5049608526 @default.
- W3036098966 creator A5052964161 @default.
- W3036098966 creator A5057603441 @default.
- W3036098966 creator A5075859960 @default.
- W3036098966 date "2020-09-01" @default.
- W3036098966 modified "2023-10-11" @default.
- W3036098966 title "The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth" @default.
- W3036098966 cites W1592992906 @default.
- W3036098966 cites W1965701586 @default.
- W3036098966 cites W1966397334 @default.
- W3036098966 cites W1968509965 @default.
- W3036098966 cites W1973278816 @default.
- W3036098966 cites W1974405492 @default.
- W3036098966 cites W1977531160 @default.
- W3036098966 cites W1982998964 @default.
- W3036098966 cites W1985317544 @default.
- W3036098966 cites W1989964494 @default.
- W3036098966 cites W2002782249 @default.
- W3036098966 cites W2004918923 @default.
- W3036098966 cites W2005426441 @default.
- W3036098966 cites W2013528197 @default.
- W3036098966 cites W2018722759 @default.
- W3036098966 cites W2027862110 @default.
- W3036098966 cites W2028795489 @default.
- W3036098966 cites W2029401070 @default.
- W3036098966 cites W2033504045 @default.
- W3036098966 cites W2034212688 @default.
- W3036098966 cites W2034280294 @default.
- W3036098966 cites W2042904816 @default.
- W3036098966 cites W2042971561 @default.
- W3036098966 cites W2043127376 @default.
- W3036098966 cites W2044165871 @default.
- W3036098966 cites W2046892047 @default.
- W3036098966 cites W2047896161 @default.
- W3036098966 cites W2052473341 @default.
- W3036098966 cites W2058750287 @default.
- W3036098966 cites W2066760610 @default.
- W3036098966 cites W2070937214 @default.
- W3036098966 cites W2071069131 @default.
- W3036098966 cites W2075467751 @default.
- W3036098966 cites W2083459544 @default.
- W3036098966 cites W2088030015 @default.
- W3036098966 cites W2092883749 @default.
- W3036098966 cites W2093572358 @default.
- W3036098966 cites W2110510775 @default.
- W3036098966 cites W2112622604 @default.
- W3036098966 cites W2127931472 @default.
- W3036098966 cites W2135726163 @default.
- W3036098966 cites W2138070573 @default.
- W3036098966 cites W2163105612 @default.
- W3036098966 cites W2171171677 @default.
- W3036098966 cites W2192071194 @default.
- W3036098966 cites W2220846163 @default.
- W3036098966 cites W2272101127 @default.
- W3036098966 cites W2288861628 @default.
- W3036098966 cites W2297982662 @default.
- W3036098966 cites W2307584022 @default.
- W3036098966 cites W2326334273 @default.
- W3036098966 cites W2330784164 @default.
- W3036098966 cites W2338710794 @default.
- W3036098966 cites W2346161185 @default.
- W3036098966 cites W2508931438 @default.
- W3036098966 cites W2521500440 @default.
- W3036098966 cites W2550121202 @default.
- W3036098966 cites W2591502295 @default.
- W3036098966 cites W2767664297 @default.
- W3036098966 cites W2769552156 @default.
- W3036098966 cites W2801339905 @default.
- W3036098966 cites W2886463320 @default.
- W3036098966 cites W2896199428 @default.
- W3036098966 cites W2958267047 @default.
- W3036098966 cites W2965099639 @default.
- W3036098966 cites W2996715185 @default.
- W3036098966 cites W999972508 @default.
- W3036098966 doi "https://doi.org/10.1016/j.chemgeo.2020.119761" @default.
- W3036098966 hasPublicationYear "2020" @default.
- W3036098966 type Work @default.
- W3036098966 sameAs 3036098966 @default.
- W3036098966 citedByCount "14" @default.
- W3036098966 countsByYear W30360989662021 @default.
- W3036098966 countsByYear W30360989662022 @default.
- W3036098966 countsByYear W30360989662023 @default.
- W3036098966 crossrefType "journal-article" @default.
- W3036098966 hasAuthorship W3036098966A5019827486 @default.
- W3036098966 hasAuthorship W3036098966A5029350428 @default.
- W3036098966 hasAuthorship W3036098966A5049608526 @default.
- W3036098966 hasAuthorship W3036098966A5052964161 @default.
- W3036098966 hasAuthorship W3036098966A5057603441 @default.
- W3036098966 hasAuthorship W3036098966A5075859960 @default.
- W3036098966 hasBestOaLocation W30360989661 @default.
- W3036098966 hasConcept C113754120 @default.
- W3036098966 hasConcept C116862484 @default.
- W3036098966 hasConcept C120806208 @default.
- W3036098966 hasConcept C121332964 @default.