Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036124210> ?p ?o ?g. }
- W3036124210 endingPage "885" @default.
- W3036124210 startingPage "869" @default.
- W3036124210 abstract "For more than a decade, the number of research works that deal with ensemble methods applied to bankruptcy prediction has been increasing. Ensemble techniques present some characteristics that, in most situations, allow them to achieve better forecasts than those estimated with single models. However, the difference between the performance of an ensemble and that of its base classifier but also between that of ensembles themselves, is often low. This is the reason why we studied a way to design an ensemble method that might achieve better forecasts than those calculated with traditional ensembles. It relies on a quantification process of data that characterize the financial situation of a sample of companies using a set of self-organizing neural networks, where each network has two main characteristics: its size is randomly chosen and the variables used to estimate its weights are selected based on a criterion that ensures the fit between the structure of the network and the data used over the learning process. The results of our study show that this technique makes it possible to significantly reduce both the type I and type II errors that can be obtained with conventional methods." @default.
- W3036124210 created "2020-06-25" @default.
- W3036124210 creator A5019867121 @default.
- W3036124210 date "2021-02-01" @default.
- W3036124210 modified "2023-10-12" @default.
- W3036124210 title "Forecasting corporate failure using ensemble of self-organizing neural networks" @default.
- W3036124210 cites W1566103283 @default.
- W3036124210 cites W1963607983 @default.
- W3036124210 cites W1988790447 @default.
- W3036124210 cites W1991756629 @default.
- W3036124210 cites W1997653576 @default.
- W3036124210 cites W2001619934 @default.
- W3036124210 cites W2004473119 @default.
- W3036124210 cites W2006586574 @default.
- W3036124210 cites W2006680549 @default.
- W3036124210 cites W2017153168 @default.
- W3036124210 cites W2026501592 @default.
- W3036124210 cites W2030499221 @default.
- W3036124210 cites W2035834704 @default.
- W3036124210 cites W2036034638 @default.
- W3036124210 cites W2046792933 @default.
- W3036124210 cites W2047649690 @default.
- W3036124210 cites W2049814849 @default.
- W3036124210 cites W2059664414 @default.
- W3036124210 cites W2066354979 @default.
- W3036124210 cites W2075806125 @default.
- W3036124210 cites W2081448292 @default.
- W3036124210 cites W2084655756 @default.
- W3036124210 cites W2096305539 @default.
- W3036124210 cites W2098307847 @default.
- W3036124210 cites W2101873550 @default.
- W3036124210 cites W2111072639 @default.
- W3036124210 cites W2113242816 @default.
- W3036124210 cites W2115629999 @default.
- W3036124210 cites W2149283560 @default.
- W3036124210 cites W2150757437 @default.
- W3036124210 cites W2164496875 @default.
- W3036124210 cites W2168046285 @default.
- W3036124210 cites W2235716330 @default.
- W3036124210 cites W2283335689 @default.
- W3036124210 cites W2293081571 @default.
- W3036124210 cites W2397839888 @default.
- W3036124210 cites W2605910048 @default.
- W3036124210 cites W2612533127 @default.
- W3036124210 cites W2735337297 @default.
- W3036124210 cites W2856948048 @default.
- W3036124210 cites W2897596136 @default.
- W3036124210 cites W2898153843 @default.
- W3036124210 cites W2911964244 @default.
- W3036124210 cites W3004732066 @default.
- W3036124210 cites W4212883601 @default.
- W3036124210 doi "https://doi.org/10.1016/j.ejor.2020.06.020" @default.
- W3036124210 hasPublicationYear "2021" @default.
- W3036124210 type Work @default.
- W3036124210 sameAs 3036124210 @default.
- W3036124210 citedByCount "14" @default.
- W3036124210 countsByYear W30361242102020 @default.
- W3036124210 countsByYear W30361242102021 @default.
- W3036124210 countsByYear W30361242102022 @default.
- W3036124210 countsByYear W30361242102023 @default.
- W3036124210 crossrefType "journal-article" @default.
- W3036124210 hasAuthorship W3036124210A5019867121 @default.
- W3036124210 hasBestOaLocation W30361242101 @default.
- W3036124210 hasConcept C111919701 @default.
- W3036124210 hasConcept C119857082 @default.
- W3036124210 hasConcept C119898033 @default.
- W3036124210 hasConcept C124101348 @default.
- W3036124210 hasConcept C154945302 @default.
- W3036124210 hasConcept C17744445 @default.
- W3036124210 hasConcept C199539241 @default.
- W3036124210 hasConcept C2777388754 @default.
- W3036124210 hasConcept C41008148 @default.
- W3036124210 hasConcept C45942800 @default.
- W3036124210 hasConcept C504631918 @default.
- W3036124210 hasConcept C50644808 @default.
- W3036124210 hasConcept C95623464 @default.
- W3036124210 hasConcept C98045186 @default.
- W3036124210 hasConceptScore W3036124210C111919701 @default.
- W3036124210 hasConceptScore W3036124210C119857082 @default.
- W3036124210 hasConceptScore W3036124210C119898033 @default.
- W3036124210 hasConceptScore W3036124210C124101348 @default.
- W3036124210 hasConceptScore W3036124210C154945302 @default.
- W3036124210 hasConceptScore W3036124210C17744445 @default.
- W3036124210 hasConceptScore W3036124210C199539241 @default.
- W3036124210 hasConceptScore W3036124210C2777388754 @default.
- W3036124210 hasConceptScore W3036124210C41008148 @default.
- W3036124210 hasConceptScore W3036124210C45942800 @default.
- W3036124210 hasConceptScore W3036124210C504631918 @default.
- W3036124210 hasConceptScore W3036124210C50644808 @default.
- W3036124210 hasConceptScore W3036124210C95623464 @default.
- W3036124210 hasConceptScore W3036124210C98045186 @default.
- W3036124210 hasIssue "3" @default.
- W3036124210 hasLocation W30361242101 @default.
- W3036124210 hasOpenAccess W3036124210 @default.
- W3036124210 hasPrimaryLocation W30361242101 @default.
- W3036124210 hasRelatedWork W1996801166 @default.
- W3036124210 hasRelatedWork W2941722791 @default.
- W3036124210 hasRelatedWork W3006723017 @default.