Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036150266> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3036150266 endingPage "21" @default.
- W3036150266 startingPage "1" @default.
- W3036150266 abstract "Some structure learning algorithms have proven to be effective in reconstructing hypothetical Bayesian Network graphs from synthetic data. However, in their mission to maximise a scoring function, many become conservative and minimise edges discovered. While simplicity is desired, the output is often a graph that consists of multiple independent subgraphs that do not enable full propagation of evidence. While this is not a problem in theory, it can be a problem in practice. This article examines a novel unconventional associational heuristic called Saiyan, which returns a directed acyclic graph that enables full propagation of evidence. Associational heuristics are not expected to perform well relative to sophisticated constraint-based and score-based learning approaches. Moreover, forcing the algorithm to connect all data variables implies that the forced edges will not be correct at the rate of those identified unrestrictedly. Still, synthetic and real-world experiments suggest that such a heuristic can be competitive relative to some of the well-established constraint-based, score-based and hybrid learning algorithms." @default.
- W3036150266 created "2020-06-25" @default.
- W3036150266 creator A5042011218 @default.
- W3036150266 date "2020-06-22" @default.
- W3036150266 modified "2023-10-14" @default.
- W3036150266 title "Learning Bayesian Networks with the Saiyan Algorithm" @default.
- W3036150266 cites W1975062332 @default.
- W3036150266 cites W1981696983 @default.
- W3036150266 cites W2008906462 @default.
- W3036150266 cites W2031779765 @default.
- W3036150266 cites W2045723096 @default.
- W3036150266 cites W2098173733 @default.
- W3036150266 cites W2099900459 @default.
- W3036150266 cites W2111061246 @default.
- W3036150266 cites W2165190832 @default.
- W3036150266 cites W2249676289 @default.
- W3036150266 cites W2726982482 @default.
- W3036150266 cites W2963154081 @default.
- W3036150266 cites W2997456480 @default.
- W3036150266 cites W3138644904 @default.
- W3036150266 cites W4232344051 @default.
- W3036150266 doi "https://doi.org/10.1145/3385655" @default.
- W3036150266 hasPublicationYear "2020" @default.
- W3036150266 type Work @default.
- W3036150266 sameAs 3036150266 @default.
- W3036150266 citedByCount "13" @default.
- W3036150266 countsByYear W30361502662019 @default.
- W3036150266 countsByYear W30361502662020 @default.
- W3036150266 countsByYear W30361502662021 @default.
- W3036150266 countsByYear W30361502662022 @default.
- W3036150266 countsByYear W30361502662023 @default.
- W3036150266 crossrefType "journal-article" @default.
- W3036150266 hasAuthorship W3036150266A5042011218 @default.
- W3036150266 hasBestOaLocation W30361502662 @default.
- W3036150266 hasConcept C107673813 @default.
- W3036150266 hasConcept C111919701 @default.
- W3036150266 hasConcept C11413529 @default.
- W3036150266 hasConcept C119857082 @default.
- W3036150266 hasConcept C127705205 @default.
- W3036150266 hasConcept C132525143 @default.
- W3036150266 hasConcept C134306372 @default.
- W3036150266 hasConcept C154945302 @default.
- W3036150266 hasConcept C173801870 @default.
- W3036150266 hasConcept C197115733 @default.
- W3036150266 hasConcept C2524010 @default.
- W3036150266 hasConcept C2776036281 @default.
- W3036150266 hasConcept C33724603 @default.
- W3036150266 hasConcept C33923547 @default.
- W3036150266 hasConcept C41008148 @default.
- W3036150266 hasConcept C74197172 @default.
- W3036150266 hasConcept C80444323 @default.
- W3036150266 hasConceptScore W3036150266C107673813 @default.
- W3036150266 hasConceptScore W3036150266C111919701 @default.
- W3036150266 hasConceptScore W3036150266C11413529 @default.
- W3036150266 hasConceptScore W3036150266C119857082 @default.
- W3036150266 hasConceptScore W3036150266C127705205 @default.
- W3036150266 hasConceptScore W3036150266C132525143 @default.
- W3036150266 hasConceptScore W3036150266C134306372 @default.
- W3036150266 hasConceptScore W3036150266C154945302 @default.
- W3036150266 hasConceptScore W3036150266C173801870 @default.
- W3036150266 hasConceptScore W3036150266C197115733 @default.
- W3036150266 hasConceptScore W3036150266C2524010 @default.
- W3036150266 hasConceptScore W3036150266C2776036281 @default.
- W3036150266 hasConceptScore W3036150266C33724603 @default.
- W3036150266 hasConceptScore W3036150266C33923547 @default.
- W3036150266 hasConceptScore W3036150266C41008148 @default.
- W3036150266 hasConceptScore W3036150266C74197172 @default.
- W3036150266 hasConceptScore W3036150266C80444323 @default.
- W3036150266 hasFunder F4320334627 @default.
- W3036150266 hasIssue "4" @default.
- W3036150266 hasLocation W30361502661 @default.
- W3036150266 hasLocation W30361502662 @default.
- W3036150266 hasOpenAccess W3036150266 @default.
- W3036150266 hasPrimaryLocation W30361502661 @default.
- W3036150266 hasRelatedWork W1068348394 @default.
- W3036150266 hasRelatedWork W1822511634 @default.
- W3036150266 hasRelatedWork W1973733304 @default.
- W3036150266 hasRelatedWork W2117323000 @default.
- W3036150266 hasRelatedWork W2519676607 @default.
- W3036150266 hasRelatedWork W2809674833 @default.
- W3036150266 hasRelatedWork W2811181459 @default.
- W3036150266 hasRelatedWork W3177062893 @default.
- W3036150266 hasRelatedWork W4308610551 @default.
- W3036150266 hasRelatedWork W4385957992 @default.
- W3036150266 hasVolume "14" @default.
- W3036150266 isParatext "false" @default.
- W3036150266 isRetracted "false" @default.
- W3036150266 magId "3036150266" @default.
- W3036150266 workType "article" @default.