Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036199432> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W3036199432 abstract "NUMERICAL solutions have been obtained for a twodimensional azimuthal- (or circumferentially) invariant form of the thin-layer Navier-Stokes equations. The governing equations which have been developed are generalized over the usual two-dimensional and axisymmetric formulation by allowing nonzero velocity components in the invariant direction. The equation formulation along with the solution method is described, and results for spinning and nonspinning bodies are presented. Contents The three-dimensional flow field equations are frequently simplified for flowfields which are invariant in one coordinate direction. In the usual axisymmetric approximation, the azimuthal velocity is assumed to be zero, and the momentum equation in that direction can be eliminated. Thus, only four equations are required to be solved for four unknowns. However, for a variety of interesting flowfields, the velocity component in the invariant direction (here taken as TJ) is not zero although the governing equations are still twodimensional. Examples include viscous flow about an infinitely swept wing, the viscous flow about a spinning axisymmetric body at 0-deg angle of attack, and axisymmetric swirl flows. Each of these flows can be solved as a twodimensional problem although all three momentum equations have to be retained, and source terms replace the derivative of the flux terms in the rj-direction. Azimuthal-invariant equations are obtained from the threedimensional equations1 by making use of two restrictions: 1) all body geometries are of axisymmetric types and 2) the state variables and the contravariant velocities do not vary in the azimuthal direction. Here, TJ is used for the azimuthal coordinate, and the terms azimuthal and rj-invariant will be used interchangeably. A sketch of a typical axisymmetric body is shown in Fig. la. In order to determine the circumferential variation of typical flow and geometric parameters, we first establish correspondence between the" @default.
- W3036199432 created "2020-06-25" @default.
- W3036199432 creator A5039864776 @default.
- W3036199432 creator A5073666183 @default.
- W3036199432 creator A5080452874 @default.
- W3036199432 date "1979-01-15" @default.
- W3036199432 modified "2023-10-03" @default.
- W3036199432 title "Numerical solution of the azimuthal-invariant thin-layer Navier-Stokes equations" @default.
- W3036199432 cites W2046673117 @default.
- W3036199432 cites W4245720376 @default.
- W3036199432 doi "https://doi.org/10.2514/6.1979-10" @default.
- W3036199432 hasPublicationYear "1979" @default.
- W3036199432 type Work @default.
- W3036199432 sameAs 3036199432 @default.
- W3036199432 citedByCount "20" @default.
- W3036199432 crossrefType "proceedings-article" @default.
- W3036199432 hasAuthorship W3036199432A5039864776 @default.
- W3036199432 hasAuthorship W3036199432A5073666183 @default.
- W3036199432 hasAuthorship W3036199432A5080452874 @default.
- W3036199432 hasConcept C121332964 @default.
- W3036199432 hasConcept C127313418 @default.
- W3036199432 hasConcept C134306372 @default.
- W3036199432 hasConcept C159737794 @default.
- W3036199432 hasConcept C190470478 @default.
- W3036199432 hasConcept C2524010 @default.
- W3036199432 hasConcept C2781278361 @default.
- W3036199432 hasConcept C33923547 @default.
- W3036199432 hasConcept C37914503 @default.
- W3036199432 hasConcept C57879066 @default.
- W3036199432 hasConcept C84655787 @default.
- W3036199432 hasConceptScore W3036199432C121332964 @default.
- W3036199432 hasConceptScore W3036199432C127313418 @default.
- W3036199432 hasConceptScore W3036199432C134306372 @default.
- W3036199432 hasConceptScore W3036199432C159737794 @default.
- W3036199432 hasConceptScore W3036199432C190470478 @default.
- W3036199432 hasConceptScore W3036199432C2524010 @default.
- W3036199432 hasConceptScore W3036199432C2781278361 @default.
- W3036199432 hasConceptScore W3036199432C33923547 @default.
- W3036199432 hasConceptScore W3036199432C37914503 @default.
- W3036199432 hasConceptScore W3036199432C57879066 @default.
- W3036199432 hasConceptScore W3036199432C84655787 @default.
- W3036199432 hasLocation W30361994321 @default.
- W3036199432 hasOpenAccess W3036199432 @default.
- W3036199432 hasPrimaryLocation W30361994321 @default.
- W3036199432 hasRelatedWork W1985938149 @default.
- W3036199432 hasRelatedWork W2036427972 @default.
- W3036199432 hasRelatedWork W2322668390 @default.
- W3036199432 hasRelatedWork W2376950174 @default.
- W3036199432 hasRelatedWork W2948341324 @default.
- W3036199432 hasRelatedWork W2963579925 @default.
- W3036199432 hasRelatedWork W3004713334 @default.
- W3036199432 hasRelatedWork W3047562196 @default.
- W3036199432 hasRelatedWork W3100525220 @default.
- W3036199432 hasRelatedWork W3134921805 @default.
- W3036199432 isParatext "false" @default.
- W3036199432 isRetracted "false" @default.
- W3036199432 magId "3036199432" @default.
- W3036199432 workType "article" @default.