Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036201112> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3036201112 endingPage "115405" @default.
- W3036201112 startingPage "115393" @default.
- W3036201112 abstract "Portfolio optimization is a hot research topic, which has attracted many researchers in recent decades. Better portfolio optimization model can help investors earn more stable profits. This paper uses three deep neural networks (DNNs), i.e., deep multilayer perceptron (DMLP), long short memory (LSTM) neural network and convolutional neural network (CNN) to build prediction-based portfolio optimization models which own the advantages of both deep learning technology and modern portfolio theory. These models first use DNNs to predict each stock's future return. Then, predictive errors of DNNs are applied to measure the risk of each stock. Next, the portfolio optimization models are built by integrating the predictive returns and semi-absolute deviation of predictive errors. These models are compared with three equal weighted portfolios, where their stocks are selected by DMLP, LSTM neural network and CNN respectively. Also, two prediction-based portfolio models built with support vector regression are used as benchmarks. This paper applies component stocks of China securities 100 index in Chinese stock market as experimental data. Experimental results present that the prediction-based portfolio model based on DMLP performs the best among these models under different desired portfolio returns, and high desired portfolio return can further improve the performance of this model. This paper presents the promising performance of DNNs in building prediction-based portfolio models." @default.
- W3036201112 created "2020-06-25" @default.
- W3036201112 creator A5003166126 @default.
- W3036201112 creator A5032776159 @default.
- W3036201112 creator A5089975783 @default.
- W3036201112 date "2020-01-01" @default.
- W3036201112 modified "2023-10-13" @default.
- W3036201112 title "Prediction-Based Portfolio Optimization Models Using Deep Neural Networks" @default.
- W3036201112 cites W1980223370 @default.
- W3036201112 cites W2025053102 @default.
- W3036201112 cites W2038865108 @default.
- W3036201112 cites W2040956360 @default.
- W3036201112 cites W2064675550 @default.
- W3036201112 cites W2066995518 @default.
- W3036201112 cites W2077611387 @default.
- W3036201112 cites W2110237869 @default.
- W3036201112 cites W2117678451 @default.
- W3036201112 cites W2141863469 @default.
- W3036201112 cites W2145049520 @default.
- W3036201112 cites W2342352817 @default.
- W3036201112 cites W2566564364 @default.
- W3036201112 cites W2571399401 @default.
- W3036201112 cites W2599699595 @default.
- W3036201112 cites W2607162077 @default.
- W3036201112 cites W2624385633 @default.
- W3036201112 cites W2754191969 @default.
- W3036201112 cites W2794343888 @default.
- W3036201112 cites W2885126078 @default.
- W3036201112 cites W2886249837 @default.
- W3036201112 cites W2889059162 @default.
- W3036201112 cites W2900880305 @default.
- W3036201112 cites W2901769706 @default.
- W3036201112 cites W2931437238 @default.
- W3036201112 cites W2963763250 @default.
- W3036201112 cites W2980996168 @default.
- W3036201112 cites W2985208125 @default.
- W3036201112 cites W2995640397 @default.
- W3036201112 cites W2997512255 @default.
- W3036201112 cites W3002756429 @default.
- W3036201112 cites W4245812377 @default.
- W3036201112 doi "https://doi.org/10.1109/access.2020.3003819" @default.
- W3036201112 hasPublicationYear "2020" @default.
- W3036201112 type Work @default.
- W3036201112 sameAs 3036201112 @default.
- W3036201112 citedByCount "34" @default.
- W3036201112 countsByYear W30362011122021 @default.
- W3036201112 countsByYear W30362011122022 @default.
- W3036201112 countsByYear W30362011122023 @default.
- W3036201112 crossrefType "journal-article" @default.
- W3036201112 hasAuthorship W3036201112A5003166126 @default.
- W3036201112 hasAuthorship W3036201112A5032776159 @default.
- W3036201112 hasAuthorship W3036201112A5089975783 @default.
- W3036201112 hasBestOaLocation W30362011121 @default.
- W3036201112 hasConcept C106159729 @default.
- W3036201112 hasConcept C119857082 @default.
- W3036201112 hasConcept C154945302 @default.
- W3036201112 hasConcept C162324750 @default.
- W3036201112 hasConcept C202655437 @default.
- W3036201112 hasConcept C2780821815 @default.
- W3036201112 hasConcept C2984842247 @default.
- W3036201112 hasConcept C41008148 @default.
- W3036201112 hasConcept C50644808 @default.
- W3036201112 hasConceptScore W3036201112C106159729 @default.
- W3036201112 hasConceptScore W3036201112C119857082 @default.
- W3036201112 hasConceptScore W3036201112C154945302 @default.
- W3036201112 hasConceptScore W3036201112C162324750 @default.
- W3036201112 hasConceptScore W3036201112C202655437 @default.
- W3036201112 hasConceptScore W3036201112C2780821815 @default.
- W3036201112 hasConceptScore W3036201112C2984842247 @default.
- W3036201112 hasConceptScore W3036201112C41008148 @default.
- W3036201112 hasConceptScore W3036201112C50644808 @default.
- W3036201112 hasFunder F4320321001 @default.
- W3036201112 hasLocation W30362011121 @default.
- W3036201112 hasOpenAccess W3036201112 @default.
- W3036201112 hasPrimaryLocation W30362011121 @default.
- W3036201112 hasRelatedWork W2950066684 @default.
- W3036201112 hasRelatedWork W3012234327 @default.
- W3036201112 hasRelatedWork W3036022456 @default.
- W3036201112 hasRelatedWork W3100549903 @default.
- W3036201112 hasRelatedWork W3157439253 @default.
- W3036201112 hasRelatedWork W3203168320 @default.
- W3036201112 hasRelatedWork W4288853838 @default.
- W3036201112 hasRelatedWork W4298388782 @default.
- W3036201112 hasRelatedWork W4312831135 @default.
- W3036201112 hasRelatedWork W1629725936 @default.
- W3036201112 hasVolume "8" @default.
- W3036201112 isParatext "false" @default.
- W3036201112 isRetracted "false" @default.
- W3036201112 magId "3036201112" @default.
- W3036201112 workType "article" @default.