Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036247675> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3036247675 endingPage "106494" @default.
- W3036247675 startingPage "106494" @default.
- W3036247675 abstract "Abstract While diagnosing Parkinson’s disease (PD), neurologists often use several clinical manifestations of the subject and rate the severity level based on the Unified Parkinson Disease Rating Scale (UPDRS). This kind of rating largely depends on the expertise of the doctors, which is not only subjective but also inefficient. Hence, in this paper, a machine learning based gait classification system which can assist the clinician to diagnose the stages of PD is presented. Gait pattern, which plays a significant role in assessing the human mobility, is a significant biomarker to classify whether the subject is healthy or affected with PD. Hence, we utilize the vertical ground reaction force (VGRF) gait dataset and extract the minimal feature vector using the statistical analysis. Subsequently, the normal distribution of the data is validated using the Shapiro–Wilk test, and from the spatial and temporal features of gait pattern, the salient biomarkers are identified using the correlation based feature selection technique. Four supervised machine learning algorithms namely decision tree (DT), support vector machine (SVM), ensemble classifier (EC) and Bayes classifier (BC) are used for statistical and kinematic analyses which predict the severity of PD. The classifier efficacy quantified using the accuracy, sensitivity and specificity highlights that the proposed framework can effectively rate the severity of PD based on Hohen and Yahr (H&Y) scale. Moreover, comparing the accuracy of the proposed PD classification approach with those of the other state-of-the-art approaches, which utilized the same gait dataset, reveal that the proposed method outperforms several other PD classification methods." @default.
- W3036247675 created "2020-06-25" @default.
- W3036247675 creator A5032569869 @default.
- W3036247675 creator A5046461979 @default.
- W3036247675 creator A5051562138 @default.
- W3036247675 date "2020-09-01" @default.
- W3036247675 modified "2023-10-10" @default.
- W3036247675 title "Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease" @default.
- W3036247675 cites W1906985535 @default.
- W3036247675 cites W2025026150 @default.
- W3036247675 cites W2032655680 @default.
- W3036247675 cites W2039520076 @default.
- W3036247675 cites W2047706369 @default.
- W3036247675 cites W2092030178 @default.
- W3036247675 cites W2132154214 @default.
- W3036247675 cites W2524932991 @default.
- W3036247675 cites W2540590185 @default.
- W3036247675 cites W2605483081 @default.
- W3036247675 cites W2612876124 @default.
- W3036247675 cites W2767302168 @default.
- W3036247675 cites W2778314063 @default.
- W3036247675 cites W2786497292 @default.
- W3036247675 cites W2791752902 @default.
- W3036247675 cites W2793602707 @default.
- W3036247675 cites W2794295133 @default.
- W3036247675 cites W2800287564 @default.
- W3036247675 cites W2802816106 @default.
- W3036247675 cites W2809789609 @default.
- W3036247675 cites W2884923535 @default.
- W3036247675 cites W2890197985 @default.
- W3036247675 cites W2890606903 @default.
- W3036247675 cites W2899180273 @default.
- W3036247675 cites W2903232160 @default.
- W3036247675 cites W2909648190 @default.
- W3036247675 cites W2909861393 @default.
- W3036247675 cites W2939302023 @default.
- W3036247675 cites W2961064073 @default.
- W3036247675 cites W2968695270 @default.
- W3036247675 cites W2981665155 @default.
- W3036247675 doi "https://doi.org/10.1016/j.asoc.2020.106494" @default.
- W3036247675 hasPublicationYear "2020" @default.
- W3036247675 type Work @default.
- W3036247675 sameAs 3036247675 @default.
- W3036247675 citedByCount "28" @default.
- W3036247675 countsByYear W30362476752020 @default.
- W3036247675 countsByYear W30362476752021 @default.
- W3036247675 countsByYear W30362476752022 @default.
- W3036247675 countsByYear W30362476752023 @default.
- W3036247675 crossrefType "journal-article" @default.
- W3036247675 hasAuthorship W3036247675A5032569869 @default.
- W3036247675 hasAuthorship W3036247675A5046461979 @default.
- W3036247675 hasAuthorship W3036247675A5051562138 @default.
- W3036247675 hasConcept C119857082 @default.
- W3036247675 hasConcept C142724271 @default.
- W3036247675 hasConcept C146357865 @default.
- W3036247675 hasConcept C151730666 @default.
- W3036247675 hasConcept C151800584 @default.
- W3036247675 hasConcept C153180895 @default.
- W3036247675 hasConcept C154945302 @default.
- W3036247675 hasConcept C2779134260 @default.
- W3036247675 hasConcept C2779734285 @default.
- W3036247675 hasConcept C41008148 @default.
- W3036247675 hasConcept C71924100 @default.
- W3036247675 hasConcept C86803240 @default.
- W3036247675 hasConcept C99508421 @default.
- W3036247675 hasConceptScore W3036247675C119857082 @default.
- W3036247675 hasConceptScore W3036247675C142724271 @default.
- W3036247675 hasConceptScore W3036247675C146357865 @default.
- W3036247675 hasConceptScore W3036247675C151730666 @default.
- W3036247675 hasConceptScore W3036247675C151800584 @default.
- W3036247675 hasConceptScore W3036247675C153180895 @default.
- W3036247675 hasConceptScore W3036247675C154945302 @default.
- W3036247675 hasConceptScore W3036247675C2779134260 @default.
- W3036247675 hasConceptScore W3036247675C2779734285 @default.
- W3036247675 hasConceptScore W3036247675C41008148 @default.
- W3036247675 hasConceptScore W3036247675C71924100 @default.
- W3036247675 hasConceptScore W3036247675C86803240 @default.
- W3036247675 hasConceptScore W3036247675C99508421 @default.
- W3036247675 hasLocation W30362476751 @default.
- W3036247675 hasOpenAccess W3036247675 @default.
- W3036247675 hasPrimaryLocation W30362476751 @default.
- W3036247675 hasRelatedWork W2961085424 @default.
- W3036247675 hasRelatedWork W3046775127 @default.
- W3036247675 hasRelatedWork W3107602296 @default.
- W3036247675 hasRelatedWork W3170094116 @default.
- W3036247675 hasRelatedWork W3209574120 @default.
- W3036247675 hasRelatedWork W4205958290 @default.
- W3036247675 hasRelatedWork W4286629047 @default.
- W3036247675 hasRelatedWork W4306321456 @default.
- W3036247675 hasRelatedWork W4306674287 @default.
- W3036247675 hasRelatedWork W4224009465 @default.
- W3036247675 hasVolume "94" @default.
- W3036247675 isParatext "false" @default.
- W3036247675 isRetracted "false" @default.
- W3036247675 magId "3036247675" @default.
- W3036247675 workType "article" @default.