Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036309969> ?p ?o ?g. }
- W3036309969 endingPage "1858" @default.
- W3036309969 startingPage "1845" @default.
- W3036309969 abstract "In this paper we study the min-max cycle cover problem with neighborhoods, which is to find a given number of K cycles to collaboratively visit n Points of Interest (POIs) in a 2D space such that the length of the longest cycle among the K cycles is minimized. The problem arises from many applications, including employing mobile sinks to collect sensor data in wireless sensor networks (WSNs), dispatching charging vehicles to recharge sensors in rechargeable sensor networks, scheduling Unmanned Aerial Vehicles (UAVs) to monitor disaster areas, etc. For example, consider the application of employing multiple mobile sinks to collect sensor data in WSNs. If some mobile sink has a long data collection tour while the other mobile sinks have short tours, this incurs a long data collection latency of the sensors in the long tour. Existing studies assumed that one vehicle needs to move to the location of a POI to serve it. We however assume that the vehicle is able to serve the POI as long as the vehicle is within the neighborhood area of the POI. One such an example is that a mobile sink in a WSN can receive data from a sensor if it is within the transmission range of the sensor (e.g., within 50 meters). It can be seen that the ignorance of neighborhoods will incur a longer traveling length. On the other hand, most existing studies only took into account the vehicle traveling time but ignore the POI service time. Consequently, although the length of some vehicle tour is short, the total amount of time consumed by a vehicle in the tour is prohibitively long, due to many POIs in the tour. In this paper we first study the min-max cycle cover problem with neighborhoods, by incorporating both neighborhoods and POI service time into consideration. We then propose novel approximation algorithms for the problem, by exploring the combinatorial properties of the problem. We finally evaluate the proposed algorithms via experimental simulations. Experimental results show that the proposed algorithms are promising. Especially, the maximum tour times by the proposed algorithms are only about from 80% to 90% of that by existing algorithms." @default.
- W3036309969 created "2020-06-25" @default.
- W3036309969 creator A5006018583 @default.
- W3036309969 creator A5037482637 @default.
- W3036309969 creator A5050881965 @default.
- W3036309969 creator A5061177999 @default.
- W3036309969 creator A5067191439 @default.
- W3036309969 creator A5077465517 @default.
- W3036309969 creator A5079727396 @default.
- W3036309969 date "2020-08-01" @default.
- W3036309969 modified "2023-10-17" @default.
- W3036309969 title "Approximation Algorithms for the Min-Max Cycle Cover Problem With Neighborhoods" @default.
- W3036309969 cites W1870153077 @default.
- W3036309969 cites W1974713906 @default.
- W3036309969 cites W1975000170 @default.
- W3036309969 cites W2052973567 @default.
- W3036309969 cites W2079896400 @default.
- W3036309969 cites W2091614717 @default.
- W3036309969 cites W2110824994 @default.
- W3036309969 cites W2131994692 @default.
- W3036309969 cites W2138358085 @default.
- W3036309969 cites W2139043285 @default.
- W3036309969 cites W2145866065 @default.
- W3036309969 cites W2157529519 @default.
- W3036309969 cites W2228088547 @default.
- W3036309969 cites W2258629489 @default.
- W3036309969 cites W2327622231 @default.
- W3036309969 cites W2343419581 @default.
- W3036309969 cites W2473702230 @default.
- W3036309969 cites W2509292452 @default.
- W3036309969 cites W2522123397 @default.
- W3036309969 cites W2571149404 @default.
- W3036309969 cites W2600422751 @default.
- W3036309969 cites W2734656253 @default.
- W3036309969 cites W2739942511 @default.
- W3036309969 cites W2740005962 @default.
- W3036309969 cites W2791355367 @default.
- W3036309969 cites W2793244758 @default.
- W3036309969 cites W2806060811 @default.
- W3036309969 cites W2892855030 @default.
- W3036309969 cites W2898587524 @default.
- W3036309969 cites W2917683896 @default.
- W3036309969 cites W2962804513 @default.
- W3036309969 cites W2962889437 @default.
- W3036309969 cites W2982670338 @default.
- W3036309969 cites W3005850858 @default.
- W3036309969 cites W3121675905 @default.
- W3036309969 cites W3140590674 @default.
- W3036309969 doi "https://doi.org/10.1109/tnet.2020.2999630" @default.
- W3036309969 hasPublicationYear "2020" @default.
- W3036309969 type Work @default.
- W3036309969 sameAs 3036309969 @default.
- W3036309969 citedByCount "13" @default.
- W3036309969 countsByYear W30363099692021 @default.
- W3036309969 countsByYear W30363099692022 @default.
- W3036309969 countsByYear W30363099692023 @default.
- W3036309969 crossrefType "journal-article" @default.
- W3036309969 hasAuthorship W3036309969A5006018583 @default.
- W3036309969 hasAuthorship W3036309969A5037482637 @default.
- W3036309969 hasAuthorship W3036309969A5050881965 @default.
- W3036309969 hasAuthorship W3036309969A5061177999 @default.
- W3036309969 hasAuthorship W3036309969A5067191439 @default.
- W3036309969 hasAuthorship W3036309969A5077465517 @default.
- W3036309969 hasAuthorship W3036309969A5079727396 @default.
- W3036309969 hasBestOaLocation W30363099691 @default.
- W3036309969 hasConcept C105795698 @default.
- W3036309969 hasConcept C11413529 @default.
- W3036309969 hasConcept C126255220 @default.
- W3036309969 hasConcept C127413603 @default.
- W3036309969 hasConcept C133462117 @default.
- W3036309969 hasConcept C143050476 @default.
- W3036309969 hasConcept C205649164 @default.
- W3036309969 hasConcept C206729178 @default.
- W3036309969 hasConcept C24590314 @default.
- W3036309969 hasConcept C2780428219 @default.
- W3036309969 hasConcept C31258907 @default.
- W3036309969 hasConcept C33923547 @default.
- W3036309969 hasConcept C41008148 @default.
- W3036309969 hasConcept C58640448 @default.
- W3036309969 hasConcept C76155785 @default.
- W3036309969 hasConcept C78519656 @default.
- W3036309969 hasConcept C79403827 @default.
- W3036309969 hasConcept C82876162 @default.
- W3036309969 hasConceptScore W3036309969C105795698 @default.
- W3036309969 hasConceptScore W3036309969C11413529 @default.
- W3036309969 hasConceptScore W3036309969C126255220 @default.
- W3036309969 hasConceptScore W3036309969C127413603 @default.
- W3036309969 hasConceptScore W3036309969C133462117 @default.
- W3036309969 hasConceptScore W3036309969C143050476 @default.
- W3036309969 hasConceptScore W3036309969C205649164 @default.
- W3036309969 hasConceptScore W3036309969C206729178 @default.
- W3036309969 hasConceptScore W3036309969C24590314 @default.
- W3036309969 hasConceptScore W3036309969C2780428219 @default.
- W3036309969 hasConceptScore W3036309969C31258907 @default.
- W3036309969 hasConceptScore W3036309969C33923547 @default.
- W3036309969 hasConceptScore W3036309969C41008148 @default.
- W3036309969 hasConceptScore W3036309969C58640448 @default.
- W3036309969 hasConceptScore W3036309969C76155785 @default.