Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036337968> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3036337968 abstract "Abstract BACKGROUND Analysis of Holter recordings can be challenging and time-consuming, therefore requiring significant clinical resources in order to achieve a high-quality diagnosis. Such resources depend largely on the qualifications of the person conducting the analysis and the duration of the recordings. A novel Holter analysis platform has been developed, based on deep neural networks trained with a dataset of one million ECGs, to allow fast and reliable Holter recording analysis. PURPOSE This study sought to compare the performance of an artificial intelligence (AI)-based Holter analysis platform using deep learning tools with a classical one used on a daily basis in hospitals (the reference). The main endpoints evaluated were duration to complete the analysis by the physician operating it as well as diagnostic accuracy of each strategy, when platforms are used by electrophysiologists (EPs). METHODS For this prospective evaluation, a total of 159 Holter recordings (24-hour) were selected from a large Holter dataset from 1 hospital, with a relatively high prevalence of electrical rhythm and conduction disorders. Recordings were analysed by four EPs using independently both the AI-based and classical analysis platforms. All four EPs had no previous experience with the AI-based platform, except for an introductory 6-hour training session. Three EPs had multiple years of experience with the traditional platform, while one EP had limited experience. For each recording, in addition to the analysis duration, diagnostic accuracy was evaluated through the analysis of the presence or absence of predefined cardiac arrhythmias and conduction disorders (prevalence): pauses (25.2%), ventricular tachycardia (VT, 30.2%), atrial fibrillation (AF, 26.4%), high grade atrioventricular block (AVB, 10.1%) and burden of premature ventricular complex larger than 10% (PVC, 23.9%). Definite diagnostics were established by an expert EP after a careful examination of all available analysis reports. RESULTS Time required for the AI-based analysis was on average 42% shorter compared to the traditional platform (6.65 min vs 11.5 min, p < 0.0001). Regarding accuracy to detect electrical disorders, there was no statistically significant differences between AI-based and classical platforms (AF: 98.7% vs 96.9%, Pause: 99.4% vs 100%, PVC: 98.7% vs 98.7%, VT: 92.5% vs 96.2%, AVB: 98.7% vs 94.3%). CONCLUSION: These preliminary findings suggest that an AI-based strategy to analyse Holter recordings may be highly accurate in detecting cardiac electrical abnormalities, with significant time savings compared to a classical strategy, even for users with no previous experience with the novel AI-based platform. An AI-based Holter analysis platform may contribute to a broader and more resource-efficient adoption of Holter monitoring. Abstract Figure. analysis duration using each strategy" @default.
- W3036337968 created "2020-06-25" @default.
- W3036337968 creator A5000121458 @default.
- W3036337968 creator A5001134430 @default.
- W3036337968 creator A5002988721 @default.
- W3036337968 creator A5003452494 @default.
- W3036337968 creator A5006764880 @default.
- W3036337968 creator A5013593477 @default.
- W3036337968 creator A5015271847 @default.
- W3036337968 creator A5016970458 @default.
- W3036337968 creator A5042511530 @default.
- W3036337968 creator A5047648615 @default.
- W3036337968 creator A5053127633 @default.
- W3036337968 creator A5054347318 @default.
- W3036337968 creator A5061384070 @default.
- W3036337968 creator A5068670089 @default.
- W3036337968 creator A5083664104 @default.
- W3036337968 date "2020-06-01" @default.
- W3036337968 modified "2023-10-16" @default.
- W3036337968 title "222AI-based strategy enables faster Holter ECG analysis with equivalent clinical accuracy compared to a classical strategy" @default.
- W3036337968 doi "https://doi.org/10.1093/europace/euaa162.374" @default.
- W3036337968 hasPublicationYear "2020" @default.
- W3036337968 type Work @default.
- W3036337968 sameAs 3036337968 @default.
- W3036337968 citedByCount "1" @default.
- W3036337968 countsByYear W30363379682022 @default.
- W3036337968 crossrefType "journal-article" @default.
- W3036337968 hasAuthorship W3036337968A5000121458 @default.
- W3036337968 hasAuthorship W3036337968A5001134430 @default.
- W3036337968 hasAuthorship W3036337968A5002988721 @default.
- W3036337968 hasAuthorship W3036337968A5003452494 @default.
- W3036337968 hasAuthorship W3036337968A5006764880 @default.
- W3036337968 hasAuthorship W3036337968A5013593477 @default.
- W3036337968 hasAuthorship W3036337968A5015271847 @default.
- W3036337968 hasAuthorship W3036337968A5016970458 @default.
- W3036337968 hasAuthorship W3036337968A5042511530 @default.
- W3036337968 hasAuthorship W3036337968A5047648615 @default.
- W3036337968 hasAuthorship W3036337968A5053127633 @default.
- W3036337968 hasAuthorship W3036337968A5054347318 @default.
- W3036337968 hasAuthorship W3036337968A5061384070 @default.
- W3036337968 hasAuthorship W3036337968A5068670089 @default.
- W3036337968 hasAuthorship W3036337968A5083664104 @default.
- W3036337968 hasConcept C108583219 @default.
- W3036337968 hasConcept C112758219 @default.
- W3036337968 hasConcept C124952713 @default.
- W3036337968 hasConcept C142362112 @default.
- W3036337968 hasConcept C154945302 @default.
- W3036337968 hasConcept C41008148 @default.
- W3036337968 hasConcept C71924100 @default.
- W3036337968 hasConceptScore W3036337968C108583219 @default.
- W3036337968 hasConceptScore W3036337968C112758219 @default.
- W3036337968 hasConceptScore W3036337968C124952713 @default.
- W3036337968 hasConceptScore W3036337968C142362112 @default.
- W3036337968 hasConceptScore W3036337968C154945302 @default.
- W3036337968 hasConceptScore W3036337968C41008148 @default.
- W3036337968 hasConceptScore W3036337968C71924100 @default.
- W3036337968 hasIssue "Supplement_1" @default.
- W3036337968 hasLocation W30363379681 @default.
- W3036337968 hasOpenAccess W3036337968 @default.
- W3036337968 hasPrimaryLocation W30363379681 @default.
- W3036337968 hasRelatedWork W2126887587 @default.
- W3036337968 hasRelatedWork W2731899572 @default.
- W3036337968 hasRelatedWork W2939353110 @default.
- W3036337968 hasRelatedWork W2941846814 @default.
- W3036337968 hasRelatedWork W2948658236 @default.
- W3036337968 hasRelatedWork W3009238340 @default.
- W3036337968 hasRelatedWork W3118091236 @default.
- W3036337968 hasRelatedWork W3215138031 @default.
- W3036337968 hasRelatedWork W4230611425 @default.
- W3036337968 hasRelatedWork W4312962853 @default.
- W3036337968 hasVolume "22" @default.
- W3036337968 isParatext "false" @default.
- W3036337968 isRetracted "false" @default.
- W3036337968 magId "3036337968" @default.
- W3036337968 workType "article" @default.