Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036397066> ?p ?o ?g. }
- W3036397066 endingPage "437" @default.
- W3036397066 startingPage "423" @default.
- W3036397066 abstract "Epidemiological data on cohorts of occupationally exposed uranium miners are currently used to assess health risks associated with chronic exposure to low doses of ionizing radiation. Nevertheless, exposure uncertainty is ubiquitous and questions the validity of statistical inference in these cohorts. This paper highlights the flexibility and relevance of the Bayesian hierarchical approach to account for both missing and left-censored (i.e. only known to be lower than a fixed detection limit) radiation doses that are prone to measurement error, when estimating radiation-related risks. Up to the authors’ knowledge, this is the first time these three sources of uncertainty are dealt with simultaneously in radiation epidemiology. To illustrate the issue, this paper focuses on the specific problem of accounting for these three sources of uncertainty when estimating the association between occupational exposure to low levels of γ-radiation and lung cancer mortality in the post-55 sub-cohort of French uranium miners. The impact of these three sources of dose uncertainty is of marginal importance when estimating the risk of death by lung cancer among French uranium miners. The corrected excess hazard ratio (EHR) is 0.81 per 100 mSv (95% credible interval: [0.28; 1.75]). Interestingly, even if the 95% credible interval of the corrected EHR is wider than the uncorrected one, a statistically significant positive association remains between γ-ray exposure and the risk of death by lung cancer, after accounting for dose uncertainty. Sensitivity analyses show that the results obtained are robust to different assumptions. Because of its flexible and modular nature, the Bayesian hierarchical models proposed in this work could be easily extended to account for high proportions of missing and left-censored dose values or exposure data, prone to more complex patterns of measurement error." @default.
- W3036397066 created "2020-06-25" @default.
- W3036397066 creator A5027375259 @default.
- W3036397066 creator A5046011133 @default.
- W3036397066 creator A5050972163 @default.
- W3036397066 creator A5077525110 @default.
- W3036397066 date "2020-06-22" @default.
- W3036397066 modified "2023-10-18" @default.
- W3036397066 title "A Bayesian hierarchical approach to account for left-censored and missing radiation doses prone to classical measurement error when analyzing lung cancer mortality due to γ-ray exposure in the French cohort of uranium miners" @default.
- W3036397066 cites W1491926200 @default.
- W3036397066 cites W1651488090 @default.
- W3036397066 cites W1718682519 @default.
- W3036397066 cites W1915412071 @default.
- W3036397066 cites W1950434717 @default.
- W3036397066 cites W1974671707 @default.
- W3036397066 cites W1981614690 @default.
- W3036397066 cites W1992043757 @default.
- W3036397066 cites W2009565450 @default.
- W3036397066 cites W2018274461 @default.
- W3036397066 cites W2021407939 @default.
- W3036397066 cites W2024974895 @default.
- W3036397066 cites W2027794314 @default.
- W3036397066 cites W2033498579 @default.
- W3036397066 cites W2037459344 @default.
- W3036397066 cites W2047978125 @default.
- W3036397066 cites W2057536591 @default.
- W3036397066 cites W2061250208 @default.
- W3036397066 cites W2072251567 @default.
- W3036397066 cites W2082557759 @default.
- W3036397066 cites W2091661648 @default.
- W3036397066 cites W2101852649 @default.
- W3036397066 cites W2103270205 @default.
- W3036397066 cites W2109474247 @default.
- W3036397066 cites W2113973342 @default.
- W3036397066 cites W2115854570 @default.
- W3036397066 cites W2122091203 @default.
- W3036397066 cites W2125143509 @default.
- W3036397066 cites W2130416410 @default.
- W3036397066 cites W2142197369 @default.
- W3036397066 cites W2146371611 @default.
- W3036397066 cites W2152797281 @default.
- W3036397066 cites W2168288095 @default.
- W3036397066 cites W2270079111 @default.
- W3036397066 cites W2322262386 @default.
- W3036397066 cites W2404737702 @default.
- W3036397066 cites W2580945377 @default.
- W3036397066 cites W2772059163 @default.
- W3036397066 cites W2792357186 @default.
- W3036397066 cites W2900578179 @default.
- W3036397066 cites W3003906706 @default.
- W3036397066 cites W3023223643 @default.
- W3036397066 cites W3163730170 @default.
- W3036397066 cites W4302338619 @default.
- W3036397066 doi "https://doi.org/10.1007/s00411-020-00859-6" @default.
- W3036397066 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32567014" @default.
- W3036397066 hasPublicationYear "2020" @default.
- W3036397066 type Work @default.
- W3036397066 sameAs 3036397066 @default.
- W3036397066 citedByCount "0" @default.
- W3036397066 crossrefType "journal-article" @default.
- W3036397066 hasAuthorship W3036397066A5027375259 @default.
- W3036397066 hasAuthorship W3036397066A5046011133 @default.
- W3036397066 hasAuthorship W3036397066A5050972163 @default.
- W3036397066 hasAuthorship W3036397066A5077525110 @default.
- W3036397066 hasBestOaLocation W30363970662 @default.
- W3036397066 hasConcept C105795698 @default.
- W3036397066 hasConcept C107130276 @default.
- W3036397066 hasConcept C121117317 @default.
- W3036397066 hasConcept C121608353 @default.
- W3036397066 hasConcept C126322002 @default.
- W3036397066 hasConcept C143998085 @default.
- W3036397066 hasConcept C149782125 @default.
- W3036397066 hasConcept C207103383 @default.
- W3036397066 hasConcept C2776256026 @default.
- W3036397066 hasConcept C2989005 @default.
- W3036397066 hasConcept C33923547 @default.
- W3036397066 hasConcept C44249647 @default.
- W3036397066 hasConcept C71924100 @default.
- W3036397066 hasConcept C72563966 @default.
- W3036397066 hasConceptScore W3036397066C105795698 @default.
- W3036397066 hasConceptScore W3036397066C107130276 @default.
- W3036397066 hasConceptScore W3036397066C121117317 @default.
- W3036397066 hasConceptScore W3036397066C121608353 @default.
- W3036397066 hasConceptScore W3036397066C126322002 @default.
- W3036397066 hasConceptScore W3036397066C143998085 @default.
- W3036397066 hasConceptScore W3036397066C149782125 @default.
- W3036397066 hasConceptScore W3036397066C207103383 @default.
- W3036397066 hasConceptScore W3036397066C2776256026 @default.
- W3036397066 hasConceptScore W3036397066C2989005 @default.
- W3036397066 hasConceptScore W3036397066C33923547 @default.
- W3036397066 hasConceptScore W3036397066C44249647 @default.
- W3036397066 hasConceptScore W3036397066C71924100 @default.
- W3036397066 hasConceptScore W3036397066C72563966 @default.
- W3036397066 hasIssue "3" @default.
- W3036397066 hasLocation W30363970661 @default.
- W3036397066 hasLocation W30363970662 @default.
- W3036397066 hasLocation W30363970663 @default.
- W3036397066 hasLocation W30363970664 @default.