Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036508889> ?p ?o ?g. }
- W3036508889 endingPage "264" @default.
- W3036508889 startingPage "258" @default.
- W3036508889 abstract "Machine learning (ML)-based stroke risk stratification systems have typically focused on conventional risk factors (CRF) (AtheroRisk-conventional). Besides CRF, carotid ultrasound image phenotypes (CUSIP) have shown to be powerful phenotypes risk stratification. This is the first ML study of its kind that integrates CUSIP and CRF for risk stratification (AtheroRisk-integrated) and compares against AtheroRisk-conventional. Two types of ML-based setups called (i) AtheroRisk-integrated and (ii) AtheroRisk-conventional were developed using random forest (RF) classifiers. AtheroRisk-conventional uses a feature set of 13 CRF such as age, gender, hemoglobin A1c, fasting blood sugar, low-density lipoprotein, and high-density lipoprotein (HDL) cholesterol, total cholesterol (TC), a ratio of TC and HDL, hypertension, smoking, family history, triglyceride, and ultrasound-based carotid plaque score. AtheroRisk-integrated system uses the feature set of 38 features with a combination of 13 CRF and 25 CUSIP features (6 types of current CUSIP, 6 types of 10-year CUSIP, 12 types of quadratic CUSIP (harmonics), and age-adjusted grayscale median). Logistic regression approach was used to select the significant features on which the RF classifier was trained. The performance of both ML systems was evaluated by area-under-the-curve (AUC) statistics computed using a leave-one-out cross-validation protocol. Left and right common carotid arteries of 202 Japanese patients were retrospectively examined to obtain 404 ultrasound scans. RF classifier showed higher improvement in AUC (~57%) for leave-one-out cross-validation protocol. Using RF classifier, AUC statistics for AtheroRisk-integrated system was higher (AUC = 0.99,p-value<0.001) compared to AtheroRisk-conventional (AUC = 0.63,p-value<0.001). The AtheroRisk-integrated ML system outperforms the AtheroRisk-conventional ML system using RF classifier." @default.
- W3036508889 created "2020-06-25" @default.
- W3036508889 creator A5002084488 @default.
- W3036508889 creator A5013046023 @default.
- W3036508889 creator A5013307219 @default.
- W3036508889 creator A5031798099 @default.
- W3036508889 creator A5039210540 @default.
- W3036508889 creator A5071959897 @default.
- W3036508889 date "2020-07-01" @default.
- W3036508889 modified "2023-09-26" @default.
- W3036508889 title "Cardiovascular/stroke risk prevention: A new machine learning framework integrating carotid ultrasound image-based phenotypes and its harmonics with conventional risk factors" @default.
- W3036508889 cites W1599122042 @default.
- W3036508889 cites W1972661406 @default.
- W3036508889 cites W2036893652 @default.
- W3036508889 cites W2081789285 @default.
- W3036508889 cites W2140639259 @default.
- W3036508889 cites W2140663657 @default.
- W3036508889 cites W2143321563 @default.
- W3036508889 cites W2147926183 @default.
- W3036508889 cites W2156465863 @default.
- W3036508889 cites W2158119391 @default.
- W3036508889 cites W2162189888 @default.
- W3036508889 cites W2162364928 @default.
- W3036508889 cites W2166555961 @default.
- W3036508889 cites W2168536722 @default.
- W3036508889 cites W2200627760 @default.
- W3036508889 cites W2330194691 @default.
- W3036508889 cites W2574971321 @default.
- W3036508889 cites W2605253636 @default.
- W3036508889 cites W2800373474 @default.
- W3036508889 cites W2804004364 @default.
- W3036508889 cites W2883424470 @default.
- W3036508889 cites W2908561509 @default.
- W3036508889 cites W2913618058 @default.
- W3036508889 cites W2940017569 @default.
- W3036508889 cites W2942696628 @default.
- W3036508889 cites W2980238977 @default.
- W3036508889 cites W3007706316 @default.
- W3036508889 cites W3010094798 @default.
- W3036508889 cites W3013197440 @default.
- W3036508889 doi "https://doi.org/10.1016/j.ihj.2020.06.004" @default.
- W3036508889 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7474133" @default.
- W3036508889 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32861380" @default.
- W3036508889 hasPublicationYear "2020" @default.
- W3036508889 type Work @default.
- W3036508889 sameAs 3036508889 @default.
- W3036508889 citedByCount "27" @default.
- W3036508889 countsByYear W30365088892020 @default.
- W3036508889 countsByYear W30365088892021 @default.
- W3036508889 countsByYear W30365088892022 @default.
- W3036508889 countsByYear W30365088892023 @default.
- W3036508889 crossrefType "journal-article" @default.
- W3036508889 hasAuthorship W3036508889A5002084488 @default.
- W3036508889 hasAuthorship W3036508889A5013046023 @default.
- W3036508889 hasAuthorship W3036508889A5013307219 @default.
- W3036508889 hasAuthorship W3036508889A5031798099 @default.
- W3036508889 hasAuthorship W3036508889A5039210540 @default.
- W3036508889 hasAuthorship W3036508889A5071959897 @default.
- W3036508889 hasBestOaLocation W30365088891 @default.
- W3036508889 hasConcept C119857082 @default.
- W3036508889 hasConcept C126322002 @default.
- W3036508889 hasConcept C126838900 @default.
- W3036508889 hasConcept C143753070 @default.
- W3036508889 hasConcept C151956035 @default.
- W3036508889 hasConcept C154945302 @default.
- W3036508889 hasConcept C169258074 @default.
- W3036508889 hasConcept C170964787 @default.
- W3036508889 hasConcept C2778163477 @default.
- W3036508889 hasConcept C41008148 @default.
- W3036508889 hasConcept C71924100 @default.
- W3036508889 hasConcept C95623464 @default.
- W3036508889 hasConceptScore W3036508889C119857082 @default.
- W3036508889 hasConceptScore W3036508889C126322002 @default.
- W3036508889 hasConceptScore W3036508889C126838900 @default.
- W3036508889 hasConceptScore W3036508889C143753070 @default.
- W3036508889 hasConceptScore W3036508889C151956035 @default.
- W3036508889 hasConceptScore W3036508889C154945302 @default.
- W3036508889 hasConceptScore W3036508889C169258074 @default.
- W3036508889 hasConceptScore W3036508889C170964787 @default.
- W3036508889 hasConceptScore W3036508889C2778163477 @default.
- W3036508889 hasConceptScore W3036508889C41008148 @default.
- W3036508889 hasConceptScore W3036508889C71924100 @default.
- W3036508889 hasConceptScore W3036508889C95623464 @default.
- W3036508889 hasIssue "4" @default.
- W3036508889 hasLocation W30365088891 @default.
- W3036508889 hasLocation W30365088892 @default.
- W3036508889 hasLocation W30365088893 @default.
- W3036508889 hasOpenAccess W3036508889 @default.
- W3036508889 hasPrimaryLocation W30365088891 @default.
- W3036508889 hasRelatedWork W2961085424 @default.
- W3036508889 hasRelatedWork W3116896278 @default.
- W3036508889 hasRelatedWork W4225360065 @default.
- W3036508889 hasRelatedWork W4226239449 @default.
- W3036508889 hasRelatedWork W4239706975 @default.
- W3036508889 hasRelatedWork W4249229055 @default.
- W3036508889 hasRelatedWork W4312427341 @default.
- W3036508889 hasRelatedWork W4315927530 @default.
- W3036508889 hasRelatedWork W4319430317 @default.