Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036554994> ?p ?o ?g. }
- W3036554994 endingPage "A1788" @default.
- W3036554994 startingPage "A1765" @default.
- W3036554994 abstract "Markov chain Monte Carlo (MCMC) samplers are numerical methods for drawing samples from a given target probability distribution. We discuss one particular MCMC sampler, the MALA-within-Gibbs sampler, from the theoretical and practical perspectives. We first show that the acceptance ratio and step size of this sampler are independent of the overall problem dimension when (i) the target distribution has sparse conditional structure, and (ii) this structure is reflected in the partial updating strategy of MALA-within-Gibbs. If, in addition, the target density is block-wise log-concave, then the sampler's convergence rate is independent of dimension. From a practical perspective, we expect that MALA-within-Gibbs is useful for solving high-dimensional Bayesian inference problems where the posterior exhibits sparse conditional structure at least approximately. In this context, a partitioning of the state that correctly reflects the sparse conditional structure must be found, and we illustrate this process in two numerical examples. We also discuss trade-offs between the block size used for partial updating and computational requirements that may increase with the number of blocks." @default.
- W3036554994 created "2020-06-25" @default.
- W3036554994 creator A5071702167 @default.
- W3036554994 creator A5074719292 @default.
- W3036554994 creator A5084545184 @default.
- W3036554994 date "2020-01-01" @default.
- W3036554994 modified "2023-09-26" @default.
- W3036554994 title "MALA-within-Gibbs Samplers for High-Dimensional Distributions with Sparse Conditional Structure" @default.
- W3036554994 cites W1545319692 @default.
- W3036554994 cites W1872439012 @default.
- W3036554994 cites W1974372238 @default.
- W3036554994 cites W1981514681 @default.
- W3036554994 cites W1981890344 @default.
- W3036554994 cites W1982482186 @default.
- W3036554994 cites W1982863946 @default.
- W3036554994 cites W1999174665 @default.
- W3036554994 cites W1999404891 @default.
- W3036554994 cites W2023103251 @default.
- W3036554994 cites W2029164135 @default.
- W3036554994 cites W2030911724 @default.
- W3036554994 cites W2068460895 @default.
- W3036554994 cites W2088198131 @default.
- W3036554994 cites W2142737094 @default.
- W3036554994 cites W2152657433 @default.
- W3036554994 cites W2153811005 @default.
- W3036554994 cites W2232528752 @default.
- W3036554994 cites W2343057691 @default.
- W3036554994 cites W2418704535 @default.
- W3036554994 cites W2562692326 @default.
- W3036554994 cites W2575742565 @default.
- W3036554994 cites W2810234128 @default.
- W3036554994 cites W2951193522 @default.
- W3036554994 cites W2962707560 @default.
- W3036554994 cites W2962802251 @default.
- W3036554994 cites W2962841346 @default.
- W3036554994 cites W2963018747 @default.
- W3036554994 cites W2963901148 @default.
- W3036554994 cites W2963964397 @default.
- W3036554994 cites W2964030972 @default.
- W3036554994 cites W3009831839 @default.
- W3036554994 cites W3098198761 @default.
- W3036554994 cites W3099212336 @default.
- W3036554994 cites W3099560474 @default.
- W3036554994 cites W3100328536 @default.
- W3036554994 cites W3102450852 @default.
- W3036554994 cites W749681720 @default.
- W3036554994 doi "https://doi.org/10.1137/19m1284014" @default.
- W3036554994 hasPublicationYear "2020" @default.
- W3036554994 type Work @default.
- W3036554994 sameAs 3036554994 @default.
- W3036554994 citedByCount "17" @default.
- W3036554994 countsByYear W30365549942020 @default.
- W3036554994 countsByYear W30365549942021 @default.
- W3036554994 countsByYear W30365549942022 @default.
- W3036554994 countsByYear W30365549942023 @default.
- W3036554994 crossrefType "journal-article" @default.
- W3036554994 hasAuthorship W3036554994A5071702167 @default.
- W3036554994 hasAuthorship W3036554994A5074719292 @default.
- W3036554994 hasAuthorship W3036554994A5084545184 @default.
- W3036554994 hasBestOaLocation W30365549942 @default.
- W3036554994 hasConcept C105795698 @default.
- W3036554994 hasConcept C107673813 @default.
- W3036554994 hasConcept C121332964 @default.
- W3036554994 hasConcept C121864883 @default.
- W3036554994 hasConcept C149782125 @default.
- W3036554994 hasConcept C158424031 @default.
- W3036554994 hasConcept C28826006 @default.
- W3036554994 hasConcept C33923547 @default.
- W3036554994 hasConcept C43555835 @default.
- W3036554994 hasConceptScore W3036554994C105795698 @default.
- W3036554994 hasConceptScore W3036554994C107673813 @default.
- W3036554994 hasConceptScore W3036554994C121332964 @default.
- W3036554994 hasConceptScore W3036554994C121864883 @default.
- W3036554994 hasConceptScore W3036554994C149782125 @default.
- W3036554994 hasConceptScore W3036554994C158424031 @default.
- W3036554994 hasConceptScore W3036554994C28826006 @default.
- W3036554994 hasConceptScore W3036554994C33923547 @default.
- W3036554994 hasConceptScore W3036554994C43555835 @default.
- W3036554994 hasFunder F4320306076 @default.
- W3036554994 hasFunder F4320306084 @default.
- W3036554994 hasFunder F4320320751 @default.
- W3036554994 hasFunder F4320337345 @default.
- W3036554994 hasIssue "3" @default.
- W3036554994 hasLocation W30365549941 @default.
- W3036554994 hasLocation W30365549942 @default.
- W3036554994 hasLocation W30365549943 @default.
- W3036554994 hasLocation W30365549944 @default.
- W3036554994 hasOpenAccess W3036554994 @default.
- W3036554994 hasPrimaryLocation W30365549941 @default.
- W3036554994 hasRelatedWork W1560220104 @default.
- W3036554994 hasRelatedWork W1976480675 @default.
- W3036554994 hasRelatedWork W2010068234 @default.
- W3036554994 hasRelatedWork W2089811522 @default.
- W3036554994 hasRelatedWork W2092244978 @default.
- W3036554994 hasRelatedWork W2351859806 @default.
- W3036554994 hasRelatedWork W2369829482 @default.
- W3036554994 hasRelatedWork W2613209927 @default.
- W3036554994 hasRelatedWork W4239376463 @default.