Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036597192> ?p ?o ?g. }
- W3036597192 endingPage "116116" @default.
- W3036597192 startingPage "116106" @default.
- W3036597192 abstract "Segmentation of 2D images is a fundamental problem for biomedical image analysis. The most widely used architecture for biomedical image segmentation is U-Net. U-Net introduces skip-connections to restore the spatial information loss caused by down-sampling operations. However, for some tasks such as the retinal vessel segmentation, the loss information of structure can not be fully recovered since the vessels is merely a curve line that can not be detected after several convolutions. In this paper, we introduce a deep guidance network to segment the biomedical image. Our proposed network consists of a guided image filter module to restore the structure information through the guidance image. Our method enables end to end training and fast inference (43ms for one image). We conduct extensive experiments for the task of vessel segmentation and optic disc and cup segmentation. The experiments on four publicly available datasets: ORIGA, REFUGE, DRIVE, and CHASEDB1 verify the effectiveness of our method." @default.
- W3036597192 created "2020-06-25" @default.
- W3036597192 creator A5002891542 @default.
- W3036597192 creator A5015900628 @default.
- W3036597192 creator A5023130798 @default.
- W3036597192 creator A5086845678 @default.
- W3036597192 date "2020-01-01" @default.
- W3036597192 modified "2023-10-17" @default.
- W3036597192 title "Deep Guidance Network for Biomedical Image Segmentation" @default.
- W3036597192 cites W1585932041 @default.
- W3036597192 cites W1903029394 @default.
- W3036597192 cites W1974969377 @default.
- W3036597192 cites W2016803658 @default.
- W3036597192 cites W2033723371 @default.
- W3036597192 cites W2057266151 @default.
- W3036597192 cites W2072130234 @default.
- W3036597192 cites W2081178133 @default.
- W3036597192 cites W2097094834 @default.
- W3036597192 cites W2108824200 @default.
- W3036597192 cites W2123215356 @default.
- W3036597192 cites W2123303981 @default.
- W3036597192 cites W2125188192 @default.
- W3036597192 cites W2132140814 @default.
- W3036597192 cites W2142317660 @default.
- W3036597192 cites W2150769593 @default.
- W3036597192 cites W2159395868 @default.
- W3036597192 cites W2206167351 @default.
- W3036597192 cites W2293295816 @default.
- W3036597192 cites W2293715564 @default.
- W3036597192 cites W2319635575 @default.
- W3036597192 cites W2327793514 @default.
- W3036597192 cites W2402050431 @default.
- W3036597192 cites W2406979340 @default.
- W3036597192 cites W2488605601 @default.
- W3036597192 cites W2513367050 @default.
- W3036597192 cites W2517954747 @default.
- W3036597192 cites W2518631343 @default.
- W3036597192 cites W2527341761 @default.
- W3036597192 cites W2592929672 @default.
- W3036597192 cites W2784956235 @default.
- W3036597192 cites W2792289763 @default.
- W3036597192 cites W2802388893 @default.
- W3036597192 cites W2919115771 @default.
- W3036597192 cites W2963150697 @default.
- W3036597192 cites W2963946669 @default.
- W3036597192 cites W2979448322 @default.
- W3036597192 cites W2979495046 @default.
- W3036597192 cites W2979605896 @default.
- W3036597192 cites W2979663271 @default.
- W3036597192 cites W2980269695 @default.
- W3036597192 cites W3098547059 @default.
- W3036597192 cites W3101386228 @default.
- W3036597192 cites W3101507774 @default.
- W3036597192 cites W3103010481 @default.
- W3036597192 cites W3105586025 @default.
- W3036597192 doi "https://doi.org/10.1109/access.2020.3002835" @default.
- W3036597192 hasPublicationYear "2020" @default.
- W3036597192 type Work @default.
- W3036597192 sameAs 3036597192 @default.
- W3036597192 citedByCount "59" @default.
- W3036597192 countsByYear W30365971922021 @default.
- W3036597192 countsByYear W30365971922022 @default.
- W3036597192 countsByYear W30365971922023 @default.
- W3036597192 crossrefType "journal-article" @default.
- W3036597192 hasAuthorship W3036597192A5002891542 @default.
- W3036597192 hasAuthorship W3036597192A5015900628 @default.
- W3036597192 hasAuthorship W3036597192A5023130798 @default.
- W3036597192 hasAuthorship W3036597192A5086845678 @default.
- W3036597192 hasBestOaLocation W30365971921 @default.
- W3036597192 hasConcept C106131492 @default.
- W3036597192 hasConcept C108583219 @default.
- W3036597192 hasConcept C115961682 @default.
- W3036597192 hasConcept C124504099 @default.
- W3036597192 hasConcept C153180895 @default.
- W3036597192 hasConcept C154945302 @default.
- W3036597192 hasConcept C162324750 @default.
- W3036597192 hasConcept C187736073 @default.
- W3036597192 hasConcept C2776214188 @default.
- W3036597192 hasConcept C2780451532 @default.
- W3036597192 hasConcept C31972630 @default.
- W3036597192 hasConcept C41008148 @default.
- W3036597192 hasConcept C65885262 @default.
- W3036597192 hasConcept C89600930 @default.
- W3036597192 hasConceptScore W3036597192C106131492 @default.
- W3036597192 hasConceptScore W3036597192C108583219 @default.
- W3036597192 hasConceptScore W3036597192C115961682 @default.
- W3036597192 hasConceptScore W3036597192C124504099 @default.
- W3036597192 hasConceptScore W3036597192C153180895 @default.
- W3036597192 hasConceptScore W3036597192C154945302 @default.
- W3036597192 hasConceptScore W3036597192C162324750 @default.
- W3036597192 hasConceptScore W3036597192C187736073 @default.
- W3036597192 hasConceptScore W3036597192C2776214188 @default.
- W3036597192 hasConceptScore W3036597192C2780451532 @default.
- W3036597192 hasConceptScore W3036597192C31972630 @default.
- W3036597192 hasConceptScore W3036597192C41008148 @default.
- W3036597192 hasConceptScore W3036597192C65885262 @default.
- W3036597192 hasConceptScore W3036597192C89600930 @default.
- W3036597192 hasFunder F4320321001 @default.