Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036606560> ?p ?o ?g. }
- W3036606560 endingPage "874" @default.
- W3036606560 startingPage "865" @default.
- W3036606560 abstract "Person reidentification (PReID) has received increasing attention due to its significant importance in intelligent video surveillance. However, most existing multiscale feature learning methods embed the multiscale feature extraction modules for PReID, which increases the complexity of the inference network and reduces the timeliness. Moreover, jointly using the small-scale and large-scale features to learn feature representations may weaken the local detailed features extraction and spatial information learning. Besides, some attentive local features are often suppressed when introducing the attention mechanisms for deep PReID models. To address these issues, a deep model with multiscale feature representation learning (MFRL) and random batch feature mask (RBFM) is proposed for PReID in this study. To ensure the feature representations discriminability and spatial information learning, two identity losses are adopted to supervise the small-scale and large-scale features learning in the MFRL module, respectively. To alleviate the situation of local attentive features being suppressed by using attention mechanisms, RBFM branch with random feature block dropping strategy which can learn the attentive local feature representations. The proposed methods are only performed in the training phase and discarded in the testing phase, thus, enhancing the effectiveness of the model. Our model achieves the state-of-the-art on the popular benchmark data sets, including Market-1501, DukeMTMC-reID, and CUHK03. Besides, we conduct a set of ablation experiments to verify the effectiveness of the proposed methods." @default.
- W3036606560 created "2020-06-25" @default.
- W3036606560 creator A5000298485 @default.
- W3036606560 creator A5004514343 @default.
- W3036606560 creator A5007724310 @default.
- W3036606560 creator A5021934263 @default.
- W3036606560 creator A5022799846 @default.
- W3036606560 creator A5026164183 @default.
- W3036606560 creator A5055838753 @default.
- W3036606560 creator A5060381913 @default.
- W3036606560 creator A5064927036 @default.
- W3036606560 creator A5087166824 @default.
- W3036606560 date "2021-12-01" @default.
- W3036606560 modified "2023-10-17" @default.
- W3036606560 title "Person Reidentification by Multiscale Feature Representation Learning With Random Batch Feature Mask" @default.
- W3036606560 cites W1949591461 @default.
- W3036606560 cites W1982925187 @default.
- W3036606560 cites W2014764728 @default.
- W3036606560 cites W2079972027 @default.
- W3036606560 cites W2183341477 @default.
- W3036606560 cites W2194775991 @default.
- W3036606560 cites W2204750386 @default.
- W3036606560 cites W2526833393 @default.
- W3036606560 cites W2585635281 @default.
- W3036606560 cites W2752782242 @default.
- W3036606560 cites W2768610172 @default.
- W3036606560 cites W2798458055 @default.
- W3036606560 cites W2798794112 @default.
- W3036606560 cites W2798874329 @default.
- W3036606560 cites W2799047769 @default.
- W3036606560 cites W2883638665 @default.
- W3036606560 cites W2896888563 @default.
- W3036606560 cites W2913231171 @default.
- W3036606560 cites W2921310091 @default.
- W3036606560 cites W2922509574 @default.
- W3036606560 cites W2954765307 @default.
- W3036606560 cites W2960065339 @default.
- W3036606560 cites W2962691289 @default.
- W3036606560 cites W2962706983 @default.
- W3036606560 cites W2962926870 @default.
- W3036606560 cites W2963046907 @default.
- W3036606560 cites W2963049565 @default.
- W3036606560 cites W2963322158 @default.
- W3036606560 cites W2963446712 @default.
- W3036606560 cites W2963805953 @default.
- W3036606560 cites W2963842104 @default.
- W3036606560 cites W2963896386 @default.
- W3036606560 cites W2963910742 @default.
- W3036606560 cites W2964044605 @default.
- W3036606560 cites W2964140013 @default.
- W3036606560 cites W2964186374 @default.
- W3036606560 cites W2967359135 @default.
- W3036606560 cites W2979938149 @default.
- W3036606560 cites W2980073905 @default.
- W3036606560 cites W2981420411 @default.
- W3036606560 cites W2984040540 @default.
- W3036606560 cites W2984145721 @default.
- W3036606560 cites W2986093954 @default.
- W3036606560 cites W2988964414 @default.
- W3036606560 cites W2990827756 @default.
- W3036606560 cites W2997738728 @default.
- W3036606560 cites W3000133216 @default.
- W3036606560 cites W3098711604 @default.
- W3036606560 cites W3100506510 @default.
- W3036606560 doi "https://doi.org/10.1109/tcds.2020.3003674" @default.
- W3036606560 hasPublicationYear "2021" @default.
- W3036606560 type Work @default.
- W3036606560 sameAs 3036606560 @default.
- W3036606560 citedByCount "39" @default.
- W3036606560 countsByYear W30366065602020 @default.
- W3036606560 countsByYear W30366065602021 @default.
- W3036606560 countsByYear W30366065602022 @default.
- W3036606560 countsByYear W30366065602023 @default.
- W3036606560 crossrefType "journal-article" @default.
- W3036606560 hasAuthorship W3036606560A5000298485 @default.
- W3036606560 hasAuthorship W3036606560A5004514343 @default.
- W3036606560 hasAuthorship W3036606560A5007724310 @default.
- W3036606560 hasAuthorship W3036606560A5021934263 @default.
- W3036606560 hasAuthorship W3036606560A5022799846 @default.
- W3036606560 hasAuthorship W3036606560A5026164183 @default.
- W3036606560 hasAuthorship W3036606560A5055838753 @default.
- W3036606560 hasAuthorship W3036606560A5060381913 @default.
- W3036606560 hasAuthorship W3036606560A5064927036 @default.
- W3036606560 hasAuthorship W3036606560A5087166824 @default.
- W3036606560 hasConcept C119857082 @default.
- W3036606560 hasConcept C13280743 @default.
- W3036606560 hasConcept C138885662 @default.
- W3036606560 hasConcept C153180895 @default.
- W3036606560 hasConcept C154945302 @default.
- W3036606560 hasConcept C17744445 @default.
- W3036606560 hasConcept C185798385 @default.
- W3036606560 hasConcept C199539241 @default.
- W3036606560 hasConcept C205649164 @default.
- W3036606560 hasConcept C2776214188 @default.
- W3036606560 hasConcept C2776359362 @default.
- W3036606560 hasConcept C2776401178 @default.
- W3036606560 hasConcept C41008148 @default.
- W3036606560 hasConcept C41895202 @default.