Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036618950> ?p ?o ?g. }
- W3036618950 endingPage "118204" @default.
- W3036618950 startingPage "118204" @default.
- W3036618950 abstract "A wide variety of real life complex networks are prohibitively large for modeling, analysis and control. Understanding the structure and dynamics of such networks entails creating a smaller representative network that preserves its relevant topological and dynamical properties. While modern machine learning methods have enabled identification of governing laws for complex dynamical systems, their inability to produce white-box models with sufficient physical interpretation renders such methods undesirable to domain experts. In this paper, we introduce a hybrid black-box, white-box approach for the sparse identification of the governing laws for complex, highly coupled dynamical systems with particular emphasis on finding the influential reactions in chemical reaction networks for combustion applications, using a data-driven sparse-learning technique. The proposed approach identifies a set of influential reactions using species concentrations and reaction rates, with minimal computational cost without requiring additional data or simulations. The new approach is applied to analyze the combustion chemistry of H2 and C3H8 in a constant-volume homogeneous reactor. The influential reactions determined by the sparse-learning method are consistent with the current kinetics knowledge of chemical mechanisms. Additionally, we show that a reduced version of the parent mechanism can be generated as a combination of the significantly reduced influential reactions identified at different times and conditions and that for both H2 and C3H8 fuel, the reduced mechanisms perform closely to the parent mechanisms as a function of the ignition delay time over a wide range of conditions. Our results demonstrate the potential of the sparse-learning approach as an effective and efficient tool for dynamical system analysis and reduction. The uniqueness of this approach as applied to combustion systems lies in the ability to identify influential reactions in specified conditions and times during the evolution of the combustion process. This ability is of great interest to understand chemical reaction systems." @default.
- W3036618950 created "2020-06-25" @default.
- W3036618950 creator A5002976916 @default.
- W3036618950 creator A5019936971 @default.
- W3036618950 creator A5038460282 @default.
- W3036618950 creator A5051408642 @default.
- W3036618950 creator A5066981291 @default.
- W3036618950 creator A5077596310 @default.
- W3036618950 creator A5077692655 @default.
- W3036618950 creator A5085311610 @default.
- W3036618950 date "2020-11-01" @default.
- W3036618950 modified "2023-10-11" @default.
- W3036618950 title "On sparse identification of complex dynamical systems: A study on discovering influential reactions in chemical reaction networks" @default.
- W3036618950 cites W1145550295 @default.
- W3036618950 cites W19125392 @default.
- W3036618950 cites W1971504124 @default.
- W3036618950 cites W1979434044 @default.
- W3036618950 cites W1987265711 @default.
- W3036618950 cites W1990554831 @default.
- W3036618950 cites W2004455606 @default.
- W3036618950 cites W2013745496 @default.
- W3036618950 cites W2024056314 @default.
- W3036618950 cites W2035282767 @default.
- W3036618950 cites W2036752995 @default.
- W3036618950 cites W2044484168 @default.
- W3036618950 cites W2046100676 @default.
- W3036618950 cites W2048998010 @default.
- W3036618950 cites W2053674498 @default.
- W3036618950 cites W2060393106 @default.
- W3036618950 cites W2067121227 @default.
- W3036618950 cites W2075596910 @default.
- W3036618950 cites W2077823115 @default.
- W3036618950 cites W2078152465 @default.
- W3036618950 cites W2094781369 @default.
- W3036618950 cites W2096407655 @default.
- W3036618950 cites W2102906469 @default.
- W3036618950 cites W2104571469 @default.
- W3036618950 cites W2124755620 @default.
- W3036618950 cites W2141906015 @default.
- W3036618950 cites W2147294935 @default.
- W3036618950 cites W2167154952 @default.
- W3036618950 cites W2167718560 @default.
- W3036618950 cites W2584633822 @default.
- W3036618950 cites W2764945271 @default.
- W3036618950 doi "https://doi.org/10.1016/j.fuel.2020.118204" @default.
- W3036618950 hasPublicationYear "2020" @default.
- W3036618950 type Work @default.
- W3036618950 sameAs 3036618950 @default.
- W3036618950 citedByCount "3" @default.
- W3036618950 countsByYear W30366189502021 @default.
- W3036618950 countsByYear W30366189502022 @default.
- W3036618950 countsByYear W30366189502023 @default.
- W3036618950 crossrefType "journal-article" @default.
- W3036618950 hasAuthorship W3036618950A5002976916 @default.
- W3036618950 hasAuthorship W3036618950A5019936971 @default.
- W3036618950 hasAuthorship W3036618950A5038460282 @default.
- W3036618950 hasAuthorship W3036618950A5051408642 @default.
- W3036618950 hasAuthorship W3036618950A5066981291 @default.
- W3036618950 hasAuthorship W3036618950A5077596310 @default.
- W3036618950 hasAuthorship W3036618950A5077692655 @default.
- W3036618950 hasAuthorship W3036618950A5085311610 @default.
- W3036618950 hasBestOaLocation W30366189502 @default.
- W3036618950 hasConcept C105923489 @default.
- W3036618950 hasConcept C116834253 @default.
- W3036618950 hasConcept C119857082 @default.
- W3036618950 hasConcept C121332964 @default.
- W3036618950 hasConcept C127413603 @default.
- W3036618950 hasConcept C136197465 @default.
- W3036618950 hasConcept C154945302 @default.
- W3036618950 hasConcept C178790620 @default.
- W3036618950 hasConcept C183696295 @default.
- W3036618950 hasConcept C185592680 @default.
- W3036618950 hasConcept C186060115 @default.
- W3036618950 hasConcept C41008148 @default.
- W3036618950 hasConcept C59822182 @default.
- W3036618950 hasConcept C62520636 @default.
- W3036618950 hasConcept C79379906 @default.
- W3036618950 hasConcept C86803240 @default.
- W3036618950 hasConcept C94966114 @default.
- W3036618950 hasConceptScore W3036618950C105923489 @default.
- W3036618950 hasConceptScore W3036618950C116834253 @default.
- W3036618950 hasConceptScore W3036618950C119857082 @default.
- W3036618950 hasConceptScore W3036618950C121332964 @default.
- W3036618950 hasConceptScore W3036618950C127413603 @default.
- W3036618950 hasConceptScore W3036618950C136197465 @default.
- W3036618950 hasConceptScore W3036618950C154945302 @default.
- W3036618950 hasConceptScore W3036618950C178790620 @default.
- W3036618950 hasConceptScore W3036618950C183696295 @default.
- W3036618950 hasConceptScore W3036618950C185592680 @default.
- W3036618950 hasConceptScore W3036618950C186060115 @default.
- W3036618950 hasConceptScore W3036618950C41008148 @default.
- W3036618950 hasConceptScore W3036618950C59822182 @default.
- W3036618950 hasConceptScore W3036618950C62520636 @default.
- W3036618950 hasConceptScore W3036618950C79379906 @default.
- W3036618950 hasConceptScore W3036618950C86803240 @default.
- W3036618950 hasConceptScore W3036618950C94966114 @default.
- W3036618950 hasLocation W30366189501 @default.
- W3036618950 hasLocation W30366189502 @default.