Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036681193> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3036681193 abstract "Microarray data is an increasingly important tool for providing information on gene expression for analysis and interpretation. Researchers attempt to utilize the smallest possible set of relevant gene expression profiles in most gene expression studies to enhance tumor identification accuracy. This research aims to analyze and predicts colon cancer data employing a machine learning approach and feature selection technique based on a random forest classifier. More particularly, our proposed method can reduce the burden of high dimensional data and allow faster calculations by combining the “Mean Decrease Accuracy” and “Mean Decrease Gini” as feature selection methods into a renowned classifier namely Random Forest, with the aim of increasing the prediction model's accuracy level. In addition, we have also shown a comparative model analysis with selection of features and model without selection of features. The extensive experimental results have demonstrated that the proposed model with feature selection is favorable and effective which triumphs the best performance of accuracy." @default.
- W3036681193 created "2020-06-25" @default.
- W3036681193 creator A5063955582 @default.
- W3036681193 creator A5069132254 @default.
- W3036681193 creator A5072317896 @default.
- W3036681193 creator A5078128277 @default.
- W3036681193 date "2020-06-18" @default.
- W3036681193 modified "2023-10-18" @default.
- W3036681193 title "Detection of colon cancer based on microarray dataset using machine learning as a feature selection and classification techniques" @default.
- W3036681193 cites W1520054289 @default.
- W3036681193 cites W1963795510 @default.
- W3036681193 cites W2013845817 @default.
- W3036681193 cites W2014488833 @default.
- W3036681193 cites W2016184291 @default.
- W3036681193 cites W2027739797 @default.
- W3036681193 cites W2040884411 @default.
- W3036681193 cites W2087684630 @default.
- W3036681193 cites W2109363337 @default.
- W3036681193 cites W2128382462 @default.
- W3036681193 cites W2143481518 @default.
- W3036681193 cites W2516481003 @default.
- W3036681193 cites W2549966893 @default.
- W3036681193 cites W2773963615 @default.
- W3036681193 cites W2777698002 @default.
- W3036681193 cites W2911188335 @default.
- W3036681193 cites W2911964244 @default.
- W3036681193 cites W2915997673 @default.
- W3036681193 cites W2946321956 @default.
- W3036681193 doi "https://doi.org/10.1007/s42452-020-3051-2" @default.
- W3036681193 hasPublicationYear "2020" @default.
- W3036681193 type Work @default.
- W3036681193 sameAs 3036681193 @default.
- W3036681193 citedByCount "14" @default.
- W3036681193 countsByYear W30366811932021 @default.
- W3036681193 countsByYear W30366811932022 @default.
- W3036681193 countsByYear W30366811932023 @default.
- W3036681193 crossrefType "journal-article" @default.
- W3036681193 hasAuthorship W3036681193A5063955582 @default.
- W3036681193 hasAuthorship W3036681193A5069132254 @default.
- W3036681193 hasAuthorship W3036681193A5072317896 @default.
- W3036681193 hasAuthorship W3036681193A5078128277 @default.
- W3036681193 hasBestOaLocation W30366811931 @default.
- W3036681193 hasConcept C104317684 @default.
- W3036681193 hasConcept C119857082 @default.
- W3036681193 hasConcept C124101348 @default.
- W3036681193 hasConcept C148483581 @default.
- W3036681193 hasConcept C150194340 @default.
- W3036681193 hasConcept C153180895 @default.
- W3036681193 hasConcept C154945302 @default.
- W3036681193 hasConcept C169258074 @default.
- W3036681193 hasConcept C2984324147 @default.
- W3036681193 hasConcept C41008148 @default.
- W3036681193 hasConcept C55493867 @default.
- W3036681193 hasConcept C81917197 @default.
- W3036681193 hasConcept C8415881 @default.
- W3036681193 hasConcept C86803240 @default.
- W3036681193 hasConcept C95623464 @default.
- W3036681193 hasConceptScore W3036681193C104317684 @default.
- W3036681193 hasConceptScore W3036681193C119857082 @default.
- W3036681193 hasConceptScore W3036681193C124101348 @default.
- W3036681193 hasConceptScore W3036681193C148483581 @default.
- W3036681193 hasConceptScore W3036681193C150194340 @default.
- W3036681193 hasConceptScore W3036681193C153180895 @default.
- W3036681193 hasConceptScore W3036681193C154945302 @default.
- W3036681193 hasConceptScore W3036681193C169258074 @default.
- W3036681193 hasConceptScore W3036681193C2984324147 @default.
- W3036681193 hasConceptScore W3036681193C41008148 @default.
- W3036681193 hasConceptScore W3036681193C55493867 @default.
- W3036681193 hasConceptScore W3036681193C81917197 @default.
- W3036681193 hasConceptScore W3036681193C8415881 @default.
- W3036681193 hasConceptScore W3036681193C86803240 @default.
- W3036681193 hasConceptScore W3036681193C95623464 @default.
- W3036681193 hasIssue "7" @default.
- W3036681193 hasLocation W30366811931 @default.
- W3036681193 hasOpenAccess W3036681193 @default.
- W3036681193 hasPrimaryLocation W30366811931 @default.
- W3036681193 hasRelatedWork W2055939299 @default.
- W3036681193 hasRelatedWork W2275058042 @default.
- W3036681193 hasRelatedWork W2973799232 @default.
- W3036681193 hasRelatedWork W3134440458 @default.
- W3036681193 hasRelatedWork W3174196512 @default.
- W3036681193 hasRelatedWork W3200179079 @default.
- W3036681193 hasRelatedWork W3210877509 @default.
- W3036681193 hasRelatedWork W4212852473 @default.
- W3036681193 hasRelatedWork W4225360065 @default.
- W3036681193 hasRelatedWork W4249229055 @default.
- W3036681193 hasVolume "2" @default.
- W3036681193 isParatext "false" @default.
- W3036681193 isRetracted "false" @default.
- W3036681193 magId "3036681193" @default.
- W3036681193 workType "article" @default.