Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036682278> ?p ?o ?g. }
- W3036682278 endingPage "1746" @default.
- W3036682278 startingPage "1731" @default.
- W3036682278 abstract "Abstract The area of corporate bankruptcy prediction attains high economic importance, as it affects many stakeholders. The prediction of corporate bankruptcy has been extensively studied in economics, accounting and decision sciences over the past two decades. The corporate bankruptcy prediction has been a matter of talk among academic literature and professional researchers throughout the world. Different traditional approaches were suggested based on hypothesis testing and statistical modeling. Therefore, the primary purpose of the research is to come up with a model that can estimate the probability of corporate bankruptcy by evaluating its occurrence of failure using different machine learning models. As the dataset was not well prepared and contains missing values, various data mining and data pre-processing techniques were utilized for data preparation. Within this research, the task of resolving the issues induced by the imbalance between the two classes is approached by applying different data balancing techniques. We address the problem of imbalanced data with the random undersampling and Synthetic Minority Over Sampling Technique (SMOTE). We used five machine learning models (support vector machine, J48 decision tree, Logistic model tree, random forest and decision forest) to predict corporate bankruptcy earlier to the occurrence. We use data from 2009 to 2013 on Poland manufacturing corporates and selected the 64 financial indicators to be broken down. The main finding of the study is a significant improvement in predictive accuracy using machine learning techniques. We also include other economic indicators ratios, along with Altman’s Z-score variables related to profitability, liquidity, leverage and solvency (short/long term) to propose an efficient model. Machine learning models give better results while balancing the data through SMOTE as compared to random undersampling. The machine learning technique related to decision forest led to 99% accuracy, whereas support vector machine (SVM), J48 decision tree, Logistic Model Tree (LMT) and Random Forest (RF) led to 92%, 92.3%, 93.8% and 98.7% accuracy, respectively, with all predictive financial indicators. We find that the decision forest outperforms the other techniques and previous techniques discussed in the literature. The proposed method is also deployed on the web to assist regulators, investors, creditors and scholars to predict corporate bankruptcy." @default.
- W3036682278 created "2020-06-25" @default.
- W3036682278 creator A5004196498 @default.
- W3036682278 creator A5011092243 @default.
- W3036682278 creator A5030777395 @default.
- W3036682278 creator A5035448571 @default.
- W3036682278 creator A5035986214 @default.
- W3036682278 creator A5056693948 @default.
- W3036682278 creator A5078730212 @default.
- W3036682278 date "2020-06-17" @default.
- W3036682278 modified "2023-09-28" @default.
- W3036682278 title "Corporate Bankruptcy Prediction: An Approach Towards Better Corporate World" @default.
- W3036682278 cites W2040285440 @default.
- W3036682278 cites W2047754173 @default.
- W3036682278 cites W2124532504 @default.
- W3036682278 cites W2166996073 @default.
- W3036682278 cites W2169517050 @default.
- W3036682278 cites W2235716330 @default.
- W3036682278 cites W2319270064 @default.
- W3036682278 cites W2484210793 @default.
- W3036682278 cites W2496210498 @default.
- W3036682278 cites W2549839096 @default.
- W3036682278 cites W2606658888 @default.
- W3036682278 cites W2606916050 @default.
- W3036682278 cites W2620641980 @default.
- W3036682278 cites W2773245465 @default.
- W3036682278 cites W2800788706 @default.
- W3036682278 cites W2810154616 @default.
- W3036682278 cites W2881558296 @default.
- W3036682278 cites W2890297193 @default.
- W3036682278 cites W2891381594 @default.
- W3036682278 cites W2897596136 @default.
- W3036682278 cites W2938344512 @default.
- W3036682278 cites W2965771985 @default.
- W3036682278 cites W2966703548 @default.
- W3036682278 cites W2972052374 @default.
- W3036682278 cites W2977310428 @default.
- W3036682278 cites W2991565926 @default.
- W3036682278 cites W3125594958 @default.
- W3036682278 cites W4212883601 @default.
- W3036682278 cites W435157458 @default.
- W3036682278 cites W873782400 @default.
- W3036682278 doi "https://doi.org/10.1093/comjnl/bxaa056" @default.
- W3036682278 hasPublicationYear "2020" @default.
- W3036682278 type Work @default.
- W3036682278 sameAs 3036682278 @default.
- W3036682278 citedByCount "27" @default.
- W3036682278 countsByYear W30366822782020 @default.
- W3036682278 countsByYear W30366822782021 @default.
- W3036682278 countsByYear W30366822782022 @default.
- W3036682278 countsByYear W30366822782023 @default.
- W3036682278 crossrefType "journal-article" @default.
- W3036682278 hasAuthorship W3036682278A5004196498 @default.
- W3036682278 hasAuthorship W3036682278A5011092243 @default.
- W3036682278 hasAuthorship W3036682278A5030777395 @default.
- W3036682278 hasAuthorship W3036682278A5035448571 @default.
- W3036682278 hasAuthorship W3036682278A5035986214 @default.
- W3036682278 hasAuthorship W3036682278A5056693948 @default.
- W3036682278 hasAuthorship W3036682278A5078730212 @default.
- W3036682278 hasConcept C10138342 @default.
- W3036682278 hasConcept C119857082 @default.
- W3036682278 hasConcept C12267149 @default.
- W3036682278 hasConcept C124101348 @default.
- W3036682278 hasConcept C129361004 @default.
- W3036682278 hasConcept C136536468 @default.
- W3036682278 hasConcept C144133560 @default.
- W3036682278 hasConcept C149782125 @default.
- W3036682278 hasConcept C153083717 @default.
- W3036682278 hasConcept C154945302 @default.
- W3036682278 hasConcept C162324750 @default.
- W3036682278 hasConcept C169258074 @default.
- W3036682278 hasConcept C183582576 @default.
- W3036682278 hasConcept C2777388754 @default.
- W3036682278 hasConcept C2778215004 @default.
- W3036682278 hasConcept C41008148 @default.
- W3036682278 hasConcept C504631918 @default.
- W3036682278 hasConcept C52001869 @default.
- W3036682278 hasConcept C52003472 @default.
- W3036682278 hasConcept C84525736 @default.
- W3036682278 hasConceptScore W3036682278C10138342 @default.
- W3036682278 hasConceptScore W3036682278C119857082 @default.
- W3036682278 hasConceptScore W3036682278C12267149 @default.
- W3036682278 hasConceptScore W3036682278C124101348 @default.
- W3036682278 hasConceptScore W3036682278C129361004 @default.
- W3036682278 hasConceptScore W3036682278C136536468 @default.
- W3036682278 hasConceptScore W3036682278C144133560 @default.
- W3036682278 hasConceptScore W3036682278C149782125 @default.
- W3036682278 hasConceptScore W3036682278C153083717 @default.
- W3036682278 hasConceptScore W3036682278C154945302 @default.
- W3036682278 hasConceptScore W3036682278C162324750 @default.
- W3036682278 hasConceptScore W3036682278C169258074 @default.
- W3036682278 hasConceptScore W3036682278C183582576 @default.
- W3036682278 hasConceptScore W3036682278C2777388754 @default.
- W3036682278 hasConceptScore W3036682278C2778215004 @default.
- W3036682278 hasConceptScore W3036682278C41008148 @default.
- W3036682278 hasConceptScore W3036682278C504631918 @default.
- W3036682278 hasConceptScore W3036682278C52001869 @default.
- W3036682278 hasConceptScore W3036682278C52003472 @default.