Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036684219> ?p ?o ?g. }
- W3036684219 endingPage "100987" @default.
- W3036684219 startingPage "100987" @default.
- W3036684219 abstract "This paper aims to design an intelligent buyer to learn how to decide in an incomplete information multi-attribute bilateral simultaneous negotiation. The buyer does not know the negotiation strategy of the seller and only have access to the historical data of the previous negotiations. Using the historical data and clustering method, the type of seller is identified online during the negotiation. Then, the deep reinforcement learning method is utilized to support the buyer to learn its optimal decision. In the complete information case, we prove that the negotiation admits a unique Nash bargaining solution with possibly asymmetric negotiation powers. In comprehensive simulation studies, the efficiency of the proposed learning agent is evaluated in different scenarios and we show that the learning negotiation with incomplete information is converged to a Pareto optimal solution. Then, using the concept of the Nash bargaining solution, the negotiation power of the buyer is assessed in negotiation." @default.
- W3036684219 created "2020-06-25" @default.
- W3036684219 creator A5052397072 @default.
- W3036684219 creator A5081002970 @default.
- W3036684219 creator A5083876282 @default.
- W3036684219 date "2020-09-01" @default.
- W3036684219 modified "2023-10-04" @default.
- W3036684219 title "Learning pareto optimal solution of a multi-attribute bilateral negotiation using deep reinforcement" @default.
- W3036684219 cites W1523459335 @default.
- W3036684219 cites W1670319311 @default.
- W3036684219 cites W1886567659 @default.
- W3036684219 cites W1964758043 @default.
- W3036684219 cites W1966682685 @default.
- W3036684219 cites W1979443082 @default.
- W3036684219 cites W1986964123 @default.
- W3036684219 cites W1997131840 @default.
- W3036684219 cites W2001907002 @default.
- W3036684219 cites W2001910686 @default.
- W3036684219 cites W2004352103 @default.
- W3036684219 cites W2009835769 @default.
- W3036684219 cites W2014224364 @default.
- W3036684219 cites W2037120704 @default.
- W3036684219 cites W2038577305 @default.
- W3036684219 cites W2042361762 @default.
- W3036684219 cites W2047555172 @default.
- W3036684219 cites W2052579920 @default.
- W3036684219 cites W2057776582 @default.
- W3036684219 cites W2058366592 @default.
- W3036684219 cites W2080211138 @default.
- W3036684219 cites W2083489814 @default.
- W3036684219 cites W2087654356 @default.
- W3036684219 cites W2091565802 @default.
- W3036684219 cites W2095292009 @default.
- W3036684219 cites W2100495367 @default.
- W3036684219 cites W2105440797 @default.
- W3036684219 cites W2110798204 @default.
- W3036684219 cites W2110872636 @default.
- W3036684219 cites W2112374372 @default.
- W3036684219 cites W2117462746 @default.
- W3036684219 cites W2125165418 @default.
- W3036684219 cites W2128735946 @default.
- W3036684219 cites W2161792108 @default.
- W3036684219 cites W2163922914 @default.
- W3036684219 cites W2171666901 @default.
- W3036684219 cites W2497152198 @default.
- W3036684219 cites W2766944402 @default.
- W3036684219 cites W2790924949 @default.
- W3036684219 cites W2921835366 @default.
- W3036684219 cites W2933344222 @default.
- W3036684219 cites W2939284230 @default.
- W3036684219 cites W892773769 @default.
- W3036684219 cites W2521009808 @default.
- W3036684219 doi "https://doi.org/10.1016/j.elerap.2020.100987" @default.
- W3036684219 hasPublicationYear "2020" @default.
- W3036684219 type Work @default.
- W3036684219 sameAs 3036684219 @default.
- W3036684219 citedByCount "4" @default.
- W3036684219 countsByYear W30366842192021 @default.
- W3036684219 countsByYear W30366842192022 @default.
- W3036684219 countsByYear W30366842192023 @default.
- W3036684219 crossrefType "journal-article" @default.
- W3036684219 hasAuthorship W3036684219A5052397072 @default.
- W3036684219 hasAuthorship W3036684219A5081002970 @default.
- W3036684219 hasAuthorship W3036684219A5083876282 @default.
- W3036684219 hasConcept C113336015 @default.
- W3036684219 hasConcept C119857082 @default.
- W3036684219 hasConcept C126255220 @default.
- W3036684219 hasConcept C137635306 @default.
- W3036684219 hasConcept C154945302 @default.
- W3036684219 hasConcept C162324750 @default.
- W3036684219 hasConcept C175444787 @default.
- W3036684219 hasConcept C17744445 @default.
- W3036684219 hasConcept C199539241 @default.
- W3036684219 hasConcept C199776023 @default.
- W3036684219 hasConcept C2986314615 @default.
- W3036684219 hasConcept C33923547 @default.
- W3036684219 hasConcept C41008148 @default.
- W3036684219 hasConcept C46814582 @default.
- W3036684219 hasConcept C48057960 @default.
- W3036684219 hasConcept C68781425 @default.
- W3036684219 hasConcept C90376892 @default.
- W3036684219 hasConcept C97541855 @default.
- W3036684219 hasConceptScore W3036684219C113336015 @default.
- W3036684219 hasConceptScore W3036684219C119857082 @default.
- W3036684219 hasConceptScore W3036684219C126255220 @default.
- W3036684219 hasConceptScore W3036684219C137635306 @default.
- W3036684219 hasConceptScore W3036684219C154945302 @default.
- W3036684219 hasConceptScore W3036684219C162324750 @default.
- W3036684219 hasConceptScore W3036684219C175444787 @default.
- W3036684219 hasConceptScore W3036684219C17744445 @default.
- W3036684219 hasConceptScore W3036684219C199539241 @default.
- W3036684219 hasConceptScore W3036684219C199776023 @default.
- W3036684219 hasConceptScore W3036684219C2986314615 @default.
- W3036684219 hasConceptScore W3036684219C33923547 @default.
- W3036684219 hasConceptScore W3036684219C41008148 @default.
- W3036684219 hasConceptScore W3036684219C46814582 @default.
- W3036684219 hasConceptScore W3036684219C48057960 @default.
- W3036684219 hasConceptScore W3036684219C68781425 @default.