Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036688711> ?p ?o ?g. }
- W3036688711 endingPage "115050" @default.
- W3036688711 startingPage "115041" @default.
- W3036688711 abstract "We demonstrate use of iteratively pruned deep learning model ensembles for detecting pulmonary manifestations of COVID-19 with chest X-rays. This disease is caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, also known as the novel Coronavirus (2019-nCoV). A custom convolutional neural network and a selection of ImageNet pretrained models are trained and evaluated at patient-level on publicly available CXR collections to learn modality-specific feature representations. The learned knowledge is transferred and fine-tuned to improve performance and generalization in the related task of classifying CXRs as normal, showing bacterial pneumonia, or COVID-19-viral abnormalities. The best performing models are iteratively pruned to reduce complexity and improve memory efficiency. The predictions of the best-performing pruned models are combined through different ensemble strategies to improve classification performance. Empirical evaluations demonstrate that the weighted average of the best-performing pruned models significantly improves performance resulting in an accuracy of 99.01% and area under the curve of 0.9972 in detecting COVID-19 findings on CXRs. The combined use of modality-specific knowledge transfer, iterative model pruning, and ensemble learning resulted in improved predictions. We expect that this model can be quickly adopted for COVID-19 screening using chest radiographs." @default.
- W3036688711 created "2020-06-25" @default.
- W3036688711 creator A5005506423 @default.
- W3036688711 creator A5007260240 @default.
- W3036688711 creator A5007773014 @default.
- W3036688711 creator A5017208524 @default.
- W3036688711 creator A5041994101 @default.
- W3036688711 creator A5065629281 @default.
- W3036688711 date "2020-01-01" @default.
- W3036688711 modified "2023-10-16" @default.
- W3036688711 title "Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-Rays" @default.
- W3036688711 cites W1534477342 @default.
- W3036688711 cites W1686810756 @default.
- W3036688711 cites W1901129140 @default.
- W3036688711 cites W2057493527 @default.
- W3036688711 cites W2095705004 @default.
- W3036688711 cites W2097117768 @default.
- W3036688711 cites W2097998348 @default.
- W3036688711 cites W2123045220 @default.
- W3036688711 cites W2145085734 @default.
- W3036688711 cites W2156150815 @default.
- W3036688711 cites W2163605009 @default.
- W3036688711 cites W2194775991 @default.
- W3036688711 cites W2495425901 @default.
- W3036688711 cites W2531409750 @default.
- W3036688711 cites W2557738935 @default.
- W3036688711 cites W2608231518 @default.
- W3036688711 cites W2617049221 @default.
- W3036688711 cites W2731899572 @default.
- W3036688711 cites W2788633781 @default.
- W3036688711 cites W2796345789 @default.
- W3036688711 cites W2798813914 @default.
- W3036688711 cites W2891756914 @default.
- W3036688711 cites W2912529512 @default.
- W3036688711 cites W2914203365 @default.
- W3036688711 cites W2936503027 @default.
- W3036688711 cites W2962746461 @default.
- W3036688711 cites W2963037989 @default.
- W3036688711 cites W2963446712 @default.
- W3036688711 cites W2984190559 @default.
- W3036688711 cites W3004666248 @default.
- W3036688711 cites W3010381061 @default.
- W3036688711 cites W3013564598 @default.
- W3036688711 cites W3014129273 @default.
- W3036688711 cites W3014537881 @default.
- W3036688711 cites W3014561994 @default.
- W3036688711 cites W3101156210 @default.
- W3036688711 cites W3102564565 @default.
- W3036688711 cites W3105081694 @default.
- W3036688711 doi "https://doi.org/10.1109/access.2020.3003810" @default.
- W3036688711 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7394290" @default.
- W3036688711 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32742893" @default.
- W3036688711 hasPublicationYear "2020" @default.
- W3036688711 type Work @default.
- W3036688711 sameAs 3036688711 @default.
- W3036688711 citedByCount "240" @default.
- W3036688711 countsByYear W30366887112020 @default.
- W3036688711 countsByYear W30366887112021 @default.
- W3036688711 countsByYear W30366887112022 @default.
- W3036688711 countsByYear W30366887112023 @default.
- W3036688711 crossrefType "journal-article" @default.
- W3036688711 hasAuthorship W3036688711A5005506423 @default.
- W3036688711 hasAuthorship W3036688711A5007260240 @default.
- W3036688711 hasAuthorship W3036688711A5007773014 @default.
- W3036688711 hasAuthorship W3036688711A5017208524 @default.
- W3036688711 hasAuthorship W3036688711A5041994101 @default.
- W3036688711 hasAuthorship W3036688711A5065629281 @default.
- W3036688711 hasBestOaLocation W30366887111 @default.
- W3036688711 hasConcept C108010975 @default.
- W3036688711 hasConcept C108583219 @default.
- W3036688711 hasConcept C119857082 @default.
- W3036688711 hasConcept C119898033 @default.
- W3036688711 hasConcept C134306372 @default.
- W3036688711 hasConcept C138885662 @default.
- W3036688711 hasConcept C142724271 @default.
- W3036688711 hasConcept C150899416 @default.
- W3036688711 hasConcept C153180895 @default.
- W3036688711 hasConcept C154945302 @default.
- W3036688711 hasConcept C177148314 @default.
- W3036688711 hasConcept C2776401178 @default.
- W3036688711 hasConcept C2779134260 @default.
- W3036688711 hasConcept C2780226545 @default.
- W3036688711 hasConcept C3008058167 @default.
- W3036688711 hasConcept C33923547 @default.
- W3036688711 hasConcept C41008148 @default.
- W3036688711 hasConcept C41895202 @default.
- W3036688711 hasConcept C45942800 @default.
- W3036688711 hasConcept C524204448 @default.
- W3036688711 hasConcept C6557445 @default.
- W3036688711 hasConcept C71924100 @default.
- W3036688711 hasConcept C81363708 @default.
- W3036688711 hasConcept C86803240 @default.
- W3036688711 hasConceptScore W3036688711C108010975 @default.
- W3036688711 hasConceptScore W3036688711C108583219 @default.
- W3036688711 hasConceptScore W3036688711C119857082 @default.
- W3036688711 hasConceptScore W3036688711C119898033 @default.
- W3036688711 hasConceptScore W3036688711C134306372 @default.
- W3036688711 hasConceptScore W3036688711C138885662 @default.