Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036691346> ?p ?o ?g. }
- W3036691346 abstract "Glioma constitutes $$80%$$ of malignant primary brain tumors in adults, and is usually classified as high-grade glioma (HGG) and low-grade glioma (LGG). The LGG tumors are less aggressive, with slower growth rate as compared to HGG, and are responsive to therapy. Tumor biopsy being challenging for brain tumor patients, noninvasive imaging techniques like magnetic resonance imaging (MRI) have been extensively employed in diagnosing brain tumors. Therefore, development of automated systems for the detection and prediction of the grade of tumors based on MRI data becomes necessary for assisting doctors in the framework of augmented intelligence. In this paper, we thoroughly investigate the power of deep convolutional neural networks (ConvNets) for classification of brain tumors using multi-sequence MR images. We propose novel ConvNet models, which are trained from scratch, on MRI patches, slices, and multi-planar volumetric slices. The suitability of transfer learning for the task is next studied by applying two existing ConvNets models (VGGNet and ResNet) trained on ImageNet dataset, through fine-tuning of the last few layers. Leave-one-patient-out testing, and testing on the holdout dataset are used to evaluate the performance of the ConvNets. The results demonstrate that the proposed ConvNets achieve better accuracy in all cases where the model is trained on the multi-planar volumetric dataset. Unlike conventional models, it obtains a testing accuracy of $$95%$$ for the low/high grade glioma classification problem. A score of $$97%$$ is generated for classification of LGG with/without 1p/19q codeletion, without any additional effort toward extraction and selection of features. We study the properties of self-learned kernels/ filters in different layers, through visualization of the intermediate layer outputs. We also compare the results with that of state-of-the-art methods, demonstrating a maximum improvement of $$7%$$ on the grading performance of ConvNets and $$9%$$ on the prediction of 1p/19q codeletion status." @default.
- W3036691346 created "2020-06-25" @default.
- W3036691346 creator A5042789365 @default.
- W3036691346 creator A5065690143 @default.
- W3036691346 creator A5074172386 @default.
- W3036691346 creator A5078310289 @default.
- W3036691346 date "2020-06-21" @default.
- W3036691346 modified "2023-09-26" @default.
- W3036691346 title "Glioma Classification Using Deep Radiomics" @default.
- W3036691346 cites W1641498739 @default.
- W3036691346 cites W1749444127 @default.
- W3036691346 cites W1884191083 @default.
- W3036691346 cites W1964123950 @default.
- W3036691346 cites W1972019498 @default.
- W3036691346 cites W1987780785 @default.
- W3036691346 cites W2015398848 @default.
- W3036691346 cites W2024354681 @default.
- W3036691346 cites W2083927153 @default.
- W3036691346 cites W2092853008 @default.
- W3036691346 cites W2097117768 @default.
- W3036691346 cites W2116531017 @default.
- W3036691346 cites W2119375033 @default.
- W3036691346 cites W2128243895 @default.
- W3036691346 cites W2133865472 @default.
- W3036691346 cites W2144727376 @default.
- W3036691346 cites W2151846512 @default.
- W3036691346 cites W2161381512 @default.
- W3036691346 cites W2174661749 @default.
- W3036691346 cites W2194775991 @default.
- W3036691346 cites W2239277471 @default.
- W3036691346 cites W2301358467 @default.
- W3036691346 cites W2310992461 @default.
- W3036691346 cites W2345010043 @default.
- W3036691346 cites W2346062110 @default.
- W3036691346 cites W2366536035 @default.
- W3036691346 cites W2420447137 @default.
- W3036691346 cites W2465586471 @default.
- W3036691346 cites W2624092670 @default.
- W3036691346 cites W2741009225 @default.
- W3036691346 cites W2748685965 @default.
- W3036691346 cites W2751069891 @default.
- W3036691346 cites W2761475227 @default.
- W3036691346 cites W2762559025 @default.
- W3036691346 cites W2900530921 @default.
- W3036691346 cites W2901381629 @default.
- W3036691346 cites W2919115771 @default.
- W3036691346 cites W4255289481 @default.
- W3036691346 cites W850948285 @default.
- W3036691346 doi "https://doi.org/10.1007/s42979-020-00214-y" @default.
- W3036691346 hasPublicationYear "2020" @default.
- W3036691346 type Work @default.
- W3036691346 sameAs 3036691346 @default.
- W3036691346 citedByCount "14" @default.
- W3036691346 countsByYear W30366913462020 @default.
- W3036691346 countsByYear W30366913462021 @default.
- W3036691346 countsByYear W30366913462022 @default.
- W3036691346 countsByYear W30366913462023 @default.
- W3036691346 crossrefType "journal-article" @default.
- W3036691346 hasAuthorship W3036691346A5042789365 @default.
- W3036691346 hasAuthorship W3036691346A5065690143 @default.
- W3036691346 hasAuthorship W3036691346A5074172386 @default.
- W3036691346 hasAuthorship W3036691346A5078310289 @default.
- W3036691346 hasBestOaLocation W30366913461 @default.
- W3036691346 hasConcept C108583219 @default.
- W3036691346 hasConcept C119857082 @default.
- W3036691346 hasConcept C126838900 @default.
- W3036691346 hasConcept C143409427 @default.
- W3036691346 hasConcept C153180895 @default.
- W3036691346 hasConcept C154945302 @default.
- W3036691346 hasConcept C2778227246 @default.
- W3036691346 hasConcept C2778256017 @default.
- W3036691346 hasConcept C2778559731 @default.
- W3036691346 hasConcept C41008148 @default.
- W3036691346 hasConcept C502942594 @default.
- W3036691346 hasConcept C71924100 @default.
- W3036691346 hasConcept C81363708 @default.
- W3036691346 hasConceptScore W3036691346C108583219 @default.
- W3036691346 hasConceptScore W3036691346C119857082 @default.
- W3036691346 hasConceptScore W3036691346C126838900 @default.
- W3036691346 hasConceptScore W3036691346C143409427 @default.
- W3036691346 hasConceptScore W3036691346C153180895 @default.
- W3036691346 hasConceptScore W3036691346C154945302 @default.
- W3036691346 hasConceptScore W3036691346C2778227246 @default.
- W3036691346 hasConceptScore W3036691346C2778256017 @default.
- W3036691346 hasConceptScore W3036691346C2778559731 @default.
- W3036691346 hasConceptScore W3036691346C41008148 @default.
- W3036691346 hasConceptScore W3036691346C502942594 @default.
- W3036691346 hasConceptScore W3036691346C71924100 @default.
- W3036691346 hasConceptScore W3036691346C81363708 @default.
- W3036691346 hasIssue "4" @default.
- W3036691346 hasLocation W30366913461 @default.
- W3036691346 hasOpenAccess W3036691346 @default.
- W3036691346 hasPrimaryLocation W30366913461 @default.
- W3036691346 hasRelatedWork W2337926734 @default.
- W3036691346 hasRelatedWork W2738221750 @default.
- W3036691346 hasRelatedWork W3156786002 @default.
- W3036691346 hasRelatedWork W4224059758 @default.
- W3036691346 hasRelatedWork W4311257506 @default.
- W3036691346 hasRelatedWork W4312417841 @default.
- W3036691346 hasRelatedWork W4320802194 @default.