Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036693020> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3036693020 abstract "Abstract In this paper, we investigate a class of nonlinear fractional Schrödinger systems $$ left { textstylebegin{array}{l@{quad}l}(-triangle)^{s} u +V(x)u=F_{u}(x,u,v),& xin mathbb{R}^{N}, (-triangle)^{s} v +V(x)v=F_{v}(x,u,v),& xinmathbb{R}^{N}, end{array}displaystyle right . $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mo>{</mml:mo><mml:mtable><mml:mtr><mml:mtd><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mo>−</mml:mo><mml:mi>△</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>s</mml:mi></mml:msup><mml:mi>u</mml:mi><mml:mo>+</mml:mo><mml:mi>V</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo><mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mi>F</mml:mi><mml:mi>u</mml:mi></mml:msub><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>)</mml:mo><mml:mo>,</mml:mo></mml:mtd><mml:mtd><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mi>R</mml:mi><mml:mi>N</mml:mi></mml:msup><mml:mo>,</mml:mo></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mo>−</mml:mo><mml:mi>△</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>s</mml:mi></mml:msup><mml:mi>v</mml:mi><mml:mo>+</mml:mo><mml:mi>V</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo><mml:mi>v</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mi>F</mml:mi><mml:mi>v</mml:mi></mml:msub><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>)</mml:mo><mml:mo>,</mml:mo></mml:mtd><mml:mtd><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mi>R</mml:mi><mml:mi>N</mml:mi></mml:msup><mml:mo>,</mml:mo></mml:mtd></mml:mtr></mml:mtable></mml:mrow></mml:math> where $sin(0, 1)$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>s</mml:mi><mml:mo>∈</mml:mo><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:math> , $N>2$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>N</mml:mi><mml:mo>></mml:mo><mml:mn>2</mml:mn></mml:math> . Under relaxed assumptions on $V(x)$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>V</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:math> and $F(x, u, v)$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>F</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>)</mml:mo></mml:math> , we show the existence of infinitely many high energy solutions to the above fractional Schrödinger systems by a variant fountain theorem." @default.
- W3036693020 created "2020-06-25" @default.
- W3036693020 creator A5047148949 @default.
- W3036693020 creator A5073755802 @default.
- W3036693020 creator A5075222796 @default.
- W3036693020 date "2020-06-19" @default.
- W3036693020 modified "2023-09-23" @default.
- W3036693020 title "Existence of infinitely many high energy solutions for a class of fractional Schrödinger systems" @default.
- W3036693020 cites W1970728204 @default.
- W3036693020 cites W1971495550 @default.
- W3036693020 cites W1986428751 @default.
- W3036693020 cites W2005531762 @default.
- W3036693020 cites W2008344080 @default.
- W3036693020 cites W2011095781 @default.
- W3036693020 cites W2022671370 @default.
- W3036693020 cites W2026404207 @default.
- W3036693020 cites W2044336196 @default.
- W3036693020 cites W2047313820 @default.
- W3036693020 cites W2049434583 @default.
- W3036693020 cites W2050786518 @default.
- W3036693020 cites W2050926333 @default.
- W3036693020 cites W2051195713 @default.
- W3036693020 cites W2060507907 @default.
- W3036693020 cites W2070020532 @default.
- W3036693020 cites W2071132730 @default.
- W3036693020 cites W2130440873 @default.
- W3036693020 cites W2327218125 @default.
- W3036693020 cites W2338175498 @default.
- W3036693020 cites W2509548217 @default.
- W3036693020 cites W2527175614 @default.
- W3036693020 cites W2553762332 @default.
- W3036693020 cites W2570915431 @default.
- W3036693020 cites W2754015846 @default.
- W3036693020 cites W2962949600 @default.
- W3036693020 cites W2969152481 @default.
- W3036693020 cites W3101658996 @default.
- W3036693020 cites W3103229763 @default.
- W3036693020 cites W3124607094 @default.
- W3036693020 cites W4232306901 @default.
- W3036693020 cites W4243049761 @default.
- W3036693020 cites W4253784537 @default.
- W3036693020 cites W2058655685 @default.
- W3036693020 doi "https://doi.org/10.1186/s13662-020-02771-1" @default.
- W3036693020 hasPublicationYear "2020" @default.
- W3036693020 type Work @default.
- W3036693020 sameAs 3036693020 @default.
- W3036693020 citedByCount "0" @default.
- W3036693020 crossrefType "journal-article" @default.
- W3036693020 hasAuthorship W3036693020A5047148949 @default.
- W3036693020 hasAuthorship W3036693020A5073755802 @default.
- W3036693020 hasAuthorship W3036693020A5075222796 @default.
- W3036693020 hasBestOaLocation W30366930201 @default.
- W3036693020 hasConcept C11413529 @default.
- W3036693020 hasConcept C41008148 @default.
- W3036693020 hasConceptScore W3036693020C11413529 @default.
- W3036693020 hasConceptScore W3036693020C41008148 @default.
- W3036693020 hasFunder F4320321001 @default.
- W3036693020 hasLocation W30366930201 @default.
- W3036693020 hasOpenAccess W3036693020 @default.
- W3036693020 hasPrimaryLocation W30366930201 @default.
- W3036693020 hasRelatedWork W20998167 @default.
- W3036693020 hasRelatedWork W21685154 @default.
- W3036693020 hasRelatedWork W24464731 @default.
- W3036693020 hasRelatedWork W28073343 @default.
- W3036693020 hasRelatedWork W31981613 @default.
- W3036693020 hasRelatedWork W32588019 @default.
- W3036693020 hasRelatedWork W36795499 @default.
- W3036693020 hasRelatedWork W38375501 @default.
- W3036693020 hasRelatedWork W44668368 @default.
- W3036693020 hasRelatedWork W6096220 @default.
- W3036693020 isParatext "false" @default.
- W3036693020 isRetracted "false" @default.
- W3036693020 magId "3036693020" @default.
- W3036693020 workType "article" @default.