Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036694694> ?p ?o ?g. }
- W3036694694 endingPage "59" @default.
- W3036694694 startingPage "51" @default.
- W3036694694 abstract "We propose a practicable method for generating synthetic CT images from modified Dixon (mDixon) MR data for the challenging body section of the abdomen and extending into the pelvis. Attenuation correction is necessary to make quantitatively accurate PET but is problematic withPET/MR scanning as MR data lack the information of photon attenuation. Multiple methods were proposed to generate synthetic CT from MR images. However, due to the challenge to distinguish bone and air in MR signals, most existing methods require advanced MR sequences that entail long acquisition time and have limited availablity. To address this problem, we propose a voxel-oriented method for synthetic CT generation using both the transfer and patch learning (SCG-TPL). The overall framework of SCG-TPL includes three stages. Stage I extracts seven-dimensional texture features from mDixon MR images using the weighted convolutional sum; Stage II enlists the knowledge-leveraged transfer fuzzy c-means (KL-TFCM) clustering as well as the patch learning-oriented semi-supervised LapSVM classification to train multiple candidate four-tissue-type-identifiers (FTTIs); Stage III synthesizes CT for new patients’ mDixon images using the candidate FTTIs and voting principle. The significance of our method is threefold: (1) As the global model for patch learning, guiding by the referenced knowledge, KL-TFCM can credibly initialize MR data with overcoming the individual diversity. As the local complement, LapSVM can adaptively model each patch with low time and labor costs. (2) Jointly using the transfer KL-TFCM clustering and patch learning-oriented LapSVM classification, SCG-TPL is able to output accurate synthetic CT in the abdomen. (3) SCG-TPL synthesizes CT only using easily-obtainable mDixon MR images, which greatly facilitates its clinical practicability. Experimental studies on ten subjects’ mDixon MR data verified the superiority of our proposed method." @default.
- W3036694694 created "2020-06-25" @default.
- W3036694694 creator A5001994677 @default.
- W3036694694 creator A5008740867 @default.
- W3036694694 creator A5018829722 @default.
- W3036694694 creator A5026445761 @default.
- W3036694694 creator A5041546544 @default.
- W3036694694 creator A5057573049 @default.
- W3036694694 creator A5068828491 @default.
- W3036694694 creator A5075171975 @default.
- W3036694694 date "2020-10-01" @default.
- W3036694694 modified "2023-10-10" @default.
- W3036694694 title "mDixon-based synthetic CT generation via transfer and patch learning" @default.
- W3036694694 cites W1148496451 @default.
- W3036694694 cites W1969750491 @default.
- W3036694694 cites W1976225446 @default.
- W3036694694 cites W1978787886 @default.
- W3036694694 cites W1980076601 @default.
- W3036694694 cites W1981166908 @default.
- W3036694694 cites W1991035308 @default.
- W3036694694 cites W1995450389 @default.
- W3036694694 cites W2002129123 @default.
- W3036694694 cites W2023986164 @default.
- W3036694694 cites W2024234861 @default.
- W3036694694 cites W2044967973 @default.
- W3036694694 cites W2045415729 @default.
- W3036694694 cites W2047151644 @default.
- W3036694694 cites W2070074315 @default.
- W3036694694 cites W2080056320 @default.
- W3036694694 cites W2084851806 @default.
- W3036694694 cites W2091775381 @default.
- W3036694694 cites W2099666305 @default.
- W3036694694 cites W2100495482 @default.
- W3036694694 cites W2131611242 @default.
- W3036694694 cites W2142082007 @default.
- W3036694694 cites W2158207287 @default.
- W3036694694 cites W2167157872 @default.
- W3036694694 cites W2397717178 @default.
- W3036694694 cites W2467603620 @default.
- W3036694694 cites W2493869572 @default.
- W3036694694 cites W2580163862 @default.
- W3036694694 cites W2601762297 @default.
- W3036694694 cites W2618241468 @default.
- W3036694694 cites W2765429622 @default.
- W3036694694 cites W2808597956 @default.
- W3036694694 cites W2900794144 @default.
- W3036694694 cites W2903271484 @default.
- W3036694694 cites W2940525720 @default.
- W3036694694 cites W2945285932 @default.
- W3036694694 cites W2961307119 @default.
- W3036694694 cites W2970067152 @default.
- W3036694694 cites W2970488713 @default.
- W3036694694 cites W3101123465 @default.
- W3036694694 cites W944333893 @default.
- W3036694694 doi "https://doi.org/10.1016/j.patrec.2020.06.017" @default.
- W3036694694 hasPublicationYear "2020" @default.
- W3036694694 type Work @default.
- W3036694694 sameAs 3036694694 @default.
- W3036694694 citedByCount "3" @default.
- W3036694694 countsByYear W30366946942021 @default.
- W3036694694 countsByYear W30366946942022 @default.
- W3036694694 crossrefType "journal-article" @default.
- W3036694694 hasAuthorship W3036694694A5001994677 @default.
- W3036694694 hasAuthorship W3036694694A5008740867 @default.
- W3036694694 hasAuthorship W3036694694A5018829722 @default.
- W3036694694 hasAuthorship W3036694694A5026445761 @default.
- W3036694694 hasAuthorship W3036694694A5041546544 @default.
- W3036694694 hasAuthorship W3036694694A5057573049 @default.
- W3036694694 hasAuthorship W3036694694A5068828491 @default.
- W3036694694 hasAuthorship W3036694694A5075171975 @default.
- W3036694694 hasConcept C120665830 @default.
- W3036694694 hasConcept C121332964 @default.
- W3036694694 hasConcept C150899416 @default.
- W3036694694 hasConcept C153180895 @default.
- W3036694694 hasConcept C154945302 @default.
- W3036694694 hasConcept C184652730 @default.
- W3036694694 hasConcept C41008148 @default.
- W3036694694 hasConcept C54170458 @default.
- W3036694694 hasConcept C73555534 @default.
- W3036694694 hasConcept C89600930 @default.
- W3036694694 hasConceptScore W3036694694C120665830 @default.
- W3036694694 hasConceptScore W3036694694C121332964 @default.
- W3036694694 hasConceptScore W3036694694C150899416 @default.
- W3036694694 hasConceptScore W3036694694C153180895 @default.
- W3036694694 hasConceptScore W3036694694C154945302 @default.
- W3036694694 hasConceptScore W3036694694C184652730 @default.
- W3036694694 hasConceptScore W3036694694C41008148 @default.
- W3036694694 hasConceptScore W3036694694C54170458 @default.
- W3036694694 hasConceptScore W3036694694C73555534 @default.
- W3036694694 hasConceptScore W3036694694C89600930 @default.
- W3036694694 hasLocation W30366946941 @default.
- W3036694694 hasOpenAccess W3036694694 @default.
- W3036694694 hasPrimaryLocation W30366946941 @default.
- W3036694694 hasRelatedWork W1998563493 @default.
- W3036694694 hasRelatedWork W2016533837 @default.
- W3036694694 hasRelatedWork W2059332403 @default.
- W3036694694 hasRelatedWork W2062605435 @default.
- W3036694694 hasRelatedWork W2273182195 @default.