Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036694744> ?p ?o ?g. }
- W3036694744 endingPage "145" @default.
- W3036694744 startingPage "145" @default.
- W3036694744 abstract "The world’s oceans are under stress from climate change, acidification and other human activities, and the UN has declared 2021–2030 as the decade for marine science. To monitor the marine waters, with the purpose of detecting discharges of tracers from unknown locations, large areas will need to be covered with limited resources. To increase the detectability of marine gas seepage we propose a deep probabilistic learning algorithm, a Bayesian Convolutional Neural Network (BCNN), to classify time series of measurements. The BCNN will classify time series to belong to a leak/no-leak situation, including classification uncertainty. The latter is important for decision makers who must decide to initiate costly confirmation surveys and, hence, would like to avoid false positives. Results from a transport model are used for the learning process of the BCNN and the task is to distinguish the signal from a leak hidden within the natural variability. We show that the BCNN classifies time series arising from leaks with high accuracy and estimates its associated uncertainty. We combine the output of the BCNN model, the posterior predictive distribution, with a Bayesian decision rule showcasing how the framework can be used in practice to make optimal decisions based on a given cost function." @default.
- W3036694744 created "2020-06-25" @default.
- W3036694744 creator A5000795700 @default.
- W3036694744 creator A5027906286 @default.
- W3036694744 creator A5068501080 @default.
- W3036694744 creator A5086318788 @default.
- W3036694744 date "2020-06-19" @default.
- W3036694744 modified "2023-10-16" @default.
- W3036694744 title "Binary Time Series Classification with Bayesian Convolutional Neural Networks When Monitoring for Marine Gas Discharges" @default.
- W3036694744 cites W148177594 @default.
- W3036694744 cites W1490905064 @default.
- W3036694744 cites W1564321242 @default.
- W3036694744 cites W1908030517 @default.
- W3036694744 cites W1963658634 @default.
- W3036694744 cites W1971947278 @default.
- W3036694744 cites W1973058638 @default.
- W3036694744 cites W1984080040 @default.
- W3036694744 cites W1986045603 @default.
- W3036694744 cites W1986795400 @default.
- W3036694744 cites W1996924649 @default.
- W3036694744 cites W1999635212 @default.
- W3036694744 cites W2022320847 @default.
- W3036694744 cites W2035104901 @default.
- W3036694744 cites W2057415864 @default.
- W3036694744 cites W2068194158 @default.
- W3036694744 cites W2070808135 @default.
- W3036694744 cites W2071430351 @default.
- W3036694744 cites W2081028405 @default.
- W3036694744 cites W2081656950 @default.
- W3036694744 cites W2110823667 @default.
- W3036694744 cites W2111051539 @default.
- W3036694744 cites W2117063635 @default.
- W3036694744 cites W2164370980 @default.
- W3036694744 cites W2165698076 @default.
- W3036694744 cites W2172958760 @default.
- W3036694744 cites W2284702987 @default.
- W3036694744 cites W2316249153 @default.
- W3036694744 cites W2461065068 @default.
- W3036694744 cites W2487200415 @default.
- W3036694744 cites W2555077524 @default.
- W3036694744 cites W2570322979 @default.
- W3036694744 cites W2625593736 @default.
- W3036694744 cites W2735814571 @default.
- W3036694744 cites W2748346079 @default.
- W3036694744 cites W2786161686 @default.
- W3036694744 cites W2803892188 @default.
- W3036694744 cites W2951965145 @default.
- W3036694744 cites W2966615870 @default.
- W3036694744 cites W2974916071 @default.
- W3036694744 cites W3003037705 @default.
- W3036694744 cites W3003131864 @default.
- W3036694744 cites W3003475284 @default.
- W3036694744 cites W3004893049 @default.
- W3036694744 cites W3016465642 @default.
- W3036694744 cites W867257094 @default.
- W3036694744 doi "https://doi.org/10.3390/a13060145" @default.
- W3036694744 hasPublicationYear "2020" @default.
- W3036694744 type Work @default.
- W3036694744 sameAs 3036694744 @default.
- W3036694744 citedByCount "10" @default.
- W3036694744 countsByYear W30366947442021 @default.
- W3036694744 countsByYear W30366947442022 @default.
- W3036694744 crossrefType "journal-article" @default.
- W3036694744 hasAuthorship W3036694744A5000795700 @default.
- W3036694744 hasAuthorship W3036694744A5027906286 @default.
- W3036694744 hasAuthorship W3036694744A5068501080 @default.
- W3036694744 hasAuthorship W3036694744A5086318788 @default.
- W3036694744 hasBestOaLocation W30366947441 @default.
- W3036694744 hasConcept C107673813 @default.
- W3036694744 hasConcept C119857082 @default.
- W3036694744 hasConcept C12267149 @default.
- W3036694744 hasConcept C124101348 @default.
- W3036694744 hasConcept C143724316 @default.
- W3036694744 hasConcept C151406439 @default.
- W3036694744 hasConcept C151730666 @default.
- W3036694744 hasConcept C154945302 @default.
- W3036694744 hasConcept C160234255 @default.
- W3036694744 hasConcept C2780378346 @default.
- W3036694744 hasConcept C33724603 @default.
- W3036694744 hasConcept C39432304 @default.
- W3036694744 hasConcept C41008148 @default.
- W3036694744 hasConcept C49937458 @default.
- W3036694744 hasConcept C50644808 @default.
- W3036694744 hasConcept C64869954 @default.
- W3036694744 hasConcept C66905080 @default.
- W3036694744 hasConcept C81363708 @default.
- W3036694744 hasConcept C86803240 @default.
- W3036694744 hasConcept C87717796 @default.
- W3036694744 hasConceptScore W3036694744C107673813 @default.
- W3036694744 hasConceptScore W3036694744C119857082 @default.
- W3036694744 hasConceptScore W3036694744C12267149 @default.
- W3036694744 hasConceptScore W3036694744C124101348 @default.
- W3036694744 hasConceptScore W3036694744C143724316 @default.
- W3036694744 hasConceptScore W3036694744C151406439 @default.
- W3036694744 hasConceptScore W3036694744C151730666 @default.
- W3036694744 hasConceptScore W3036694744C154945302 @default.
- W3036694744 hasConceptScore W3036694744C160234255 @default.
- W3036694744 hasConceptScore W3036694744C2780378346 @default.