Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036697727> ?p ?o ?g. }
- W3036697727 endingPage "2544" @default.
- W3036697727 startingPage "2528" @default.
- W3036697727 abstract "A framework to perform quantification and reduction of uncertainties in a wind turbine numerical model using global sensitivity analysis and recursive Bayesian inference method is developed in this paper. We explain how a prior probability distribution on the model parameters is transformed into a posterior probability distribution, by incorporating a physical model and real field noisy observations. Nevertheless, these approaches suffer from the so-called curse of dimensionality. In order to reduce the dimension, Sobol' indices approach for global sensitivity analysis, in the context of wind turbine modelling, is presented. A major issue arising for such inverse problems is identifiabil-ity, i.e. whether the observations are sufficient to unambiguously determine the input parameters that generated the observations. Hereafter, global sensitivity analysis is also used in the context of identifiability." @default.
- W3036697727 created "2020-06-25" @default.
- W3036697727 creator A5002226198 @default.
- W3036697727 creator A5032200643 @default.
- W3036697727 creator A5033214649 @default.
- W3036697727 creator A5063468292 @default.
- W3036697727 creator A5087315002 @default.
- W3036697727 date "2021-02-16" @default.
- W3036697727 modified "2023-10-01" @default.
- W3036697727 title "Quantification and reduction of uncertainties in a wind turbine numerical model based on a global sensitivity analysis and a recursive Bayesian inference approach" @default.
- W3036697727 cites W1546628974 @default.
- W3036697727 cites W166927295 @default.
- W3036697727 cites W1840389249 @default.
- W3036697727 cites W1956094157 @default.
- W3036697727 cites W1982886636 @default.
- W3036697727 cites W1996382496 @default.
- W3036697727 cites W1996475268 @default.
- W3036697727 cites W2006037565 @default.
- W3036697727 cites W2019797235 @default.
- W3036697727 cites W2020331823 @default.
- W3036697727 cites W2023372613 @default.
- W3036697727 cites W2026645785 @default.
- W3036697727 cites W2029767409 @default.
- W3036697727 cites W2034831667 @default.
- W3036697727 cites W2042151453 @default.
- W3036697727 cites W2053934160 @default.
- W3036697727 cites W2065230098 @default.
- W3036697727 cites W2082265082 @default.
- W3036697727 cites W2089468765 @default.
- W3036697727 cites W2093229042 @default.
- W3036697727 cites W2098115494 @default.
- W3036697727 cites W2106822551 @default.
- W3036697727 cites W2113117406 @default.
- W3036697727 cites W2144553359 @default.
- W3036697727 cites W2148398963 @default.
- W3036697727 cites W2169712443 @default.
- W3036697727 cites W2173190456 @default.
- W3036697727 cites W2333586779 @default.
- W3036697727 cites W2346778841 @default.
- W3036697727 cites W2465244584 @default.
- W3036697727 cites W2484388506 @default.
- W3036697727 cites W2525056628 @default.
- W3036697727 cites W2586140425 @default.
- W3036697727 cites W2626048215 @default.
- W3036697727 cites W266349780 @default.
- W3036697727 cites W2734629348 @default.
- W3036697727 cites W2913746750 @default.
- W3036697727 cites W2949400887 @default.
- W3036697727 cites W2963956685 @default.
- W3036697727 cites W3088846732 @default.
- W3036697727 cites W4231204432 @default.
- W3036697727 cites W4241621308 @default.
- W3036697727 cites W4243645092 @default.
- W3036697727 cites W46320936 @default.
- W3036697727 doi "https://doi.org/10.1002/nme.6630" @default.
- W3036697727 hasPublicationYear "2021" @default.
- W3036697727 type Work @default.
- W3036697727 sameAs 3036697727 @default.
- W3036697727 citedByCount "9" @default.
- W3036697727 countsByYear W30366977272022 @default.
- W3036697727 countsByYear W30366977272023 @default.
- W3036697727 crossrefType "journal-article" @default.
- W3036697727 hasAuthorship W3036697727A5002226198 @default.
- W3036697727 hasAuthorship W3036697727A5032200643 @default.
- W3036697727 hasAuthorship W3036697727A5033214649 @default.
- W3036697727 hasAuthorship W3036697727A5063468292 @default.
- W3036697727 hasAuthorship W3036697727A5087315002 @default.
- W3036697727 hasBestOaLocation W30366977272 @default.
- W3036697727 hasConcept C107673813 @default.
- W3036697727 hasConcept C111335779 @default.
- W3036697727 hasConcept C11413529 @default.
- W3036697727 hasConcept C119857082 @default.
- W3036697727 hasConcept C127413603 @default.
- W3036697727 hasConcept C154945302 @default.
- W3036697727 hasConcept C160234255 @default.
- W3036697727 hasConcept C21200559 @default.
- W3036697727 hasConcept C24326235 @default.
- W3036697727 hasConcept C2524010 @default.
- W3036697727 hasConcept C2776214188 @default.
- W3036697727 hasConcept C2778449969 @default.
- W3036697727 hasConcept C28826006 @default.
- W3036697727 hasConcept C32230216 @default.
- W3036697727 hasConcept C33923547 @default.
- W3036697727 hasConcept C41008148 @default.
- W3036697727 hasConcept C78519656 @default.
- W3036697727 hasConceptScore W3036697727C107673813 @default.
- W3036697727 hasConceptScore W3036697727C111335779 @default.
- W3036697727 hasConceptScore W3036697727C11413529 @default.
- W3036697727 hasConceptScore W3036697727C119857082 @default.
- W3036697727 hasConceptScore W3036697727C127413603 @default.
- W3036697727 hasConceptScore W3036697727C154945302 @default.
- W3036697727 hasConceptScore W3036697727C160234255 @default.
- W3036697727 hasConceptScore W3036697727C21200559 @default.
- W3036697727 hasConceptScore W3036697727C24326235 @default.
- W3036697727 hasConceptScore W3036697727C2524010 @default.
- W3036697727 hasConceptScore W3036697727C2776214188 @default.
- W3036697727 hasConceptScore W3036697727C2778449969 @default.
- W3036697727 hasConceptScore W3036697727C28826006 @default.