Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036698330> ?p ?o ?g. }
- W3036698330 abstract "In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter $delta$ characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. While existing 2D nonlocal flux boundary conditions have been shown to exhibit at most first order convergence to the local counter part as $deltarightarrow 0$, we present a new generalization of classical local Neumann conditions that recovers the local case as $O(delta^2)$ in the $L^{infty}(Omega)$ norm. This convergence rate is optimal considering the $O(delta^2)$ convergence of the nonlocal equation to its local limit away from the boundary. We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and present conditions under which the solution of the nonlocal boundary value problem converges to the solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the approach to less regular domains, numerically verifying that we preserve second-order convergence for domains with corners. Based on the new formulation for nonlocal boundary condition, we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal diffusion equation with mixed boundary conditions that converges with $O(delta^2)$ convergence." @default.
- W3036698330 created "2020-06-25" @default.
- W3036698330 creator A5018163206 @default.
- W3036698330 creator A5049816813 @default.
- W3036698330 creator A5053086539 @default.
- W3036698330 creator A5056314900 @default.
- W3036698330 date "2019-08-11" @default.
- W3036698330 modified "2023-09-27" @default.
- W3036698330 title "An Asymptotically Compatible Approach For Neumann-Type Boundary Condition On Nonlocal Problems" @default.
- W3036698330 cites W1486164486 @default.
- W3036698330 cites W1491536054 @default.
- W3036698330 cites W1496430932 @default.
- W3036698330 cites W1531503646 @default.
- W3036698330 cites W1973127220 @default.
- W3036698330 cites W1974725498 @default.
- W3036698330 cites W1978121810 @default.
- W3036698330 cites W1983652726 @default.
- W3036698330 cites W1996047757 @default.
- W3036698330 cites W1997074490 @default.
- W3036698330 cites W2012828992 @default.
- W3036698330 cites W2019655926 @default.
- W3036698330 cites W2020177268 @default.
- W3036698330 cites W2023102307 @default.
- W3036698330 cites W2026713594 @default.
- W3036698330 cites W2029529153 @default.
- W3036698330 cites W2031334598 @default.
- W3036698330 cites W2034586897 @default.
- W3036698330 cites W2035253318 @default.
- W3036698330 cites W2036587683 @default.
- W3036698330 cites W2036835597 @default.
- W3036698330 cites W2038796851 @default.
- W3036698330 cites W2045721405 @default.
- W3036698330 cites W2046571480 @default.
- W3036698330 cites W2048872191 @default.
- W3036698330 cites W2050943707 @default.
- W3036698330 cites W2056061743 @default.
- W3036698330 cites W2081262680 @default.
- W3036698330 cites W2083846596 @default.
- W3036698330 cites W2090818568 @default.
- W3036698330 cites W2093971242 @default.
- W3036698330 cites W2128403212 @default.
- W3036698330 cites W2139045013 @default.
- W3036698330 cites W2142484351 @default.
- W3036698330 cites W2142537728 @default.
- W3036698330 cites W2143206135 @default.
- W3036698330 cites W2155133345 @default.
- W3036698330 cites W2159917421 @default.
- W3036698330 cites W2161215684 @default.
- W3036698330 cites W2163377433 @default.
- W3036698330 cites W2186626130 @default.
- W3036698330 cites W2259227674 @default.
- W3036698330 cites W2287409203 @default.
- W3036698330 cites W2308035364 @default.
- W3036698330 cites W2312410871 @default.
- W3036698330 cites W2330990923 @default.
- W3036698330 cites W23630133 @default.
- W3036698330 cites W2395151902 @default.
- W3036698330 cites W2497187940 @default.
- W3036698330 cites W2591506055 @default.
- W3036698330 cites W2620978636 @default.
- W3036698330 cites W2727609060 @default.
- W3036698330 cites W2737521846 @default.
- W3036698330 cites W2775167958 @default.
- W3036698330 cites W2785762403 @default.
- W3036698330 cites W2795839021 @default.
- W3036698330 cites W2808790209 @default.
- W3036698330 cites W2894842918 @default.
- W3036698330 cites W2962743801 @default.
- W3036698330 cites W2962820396 @default.
- W3036698330 cites W2963081603 @default.
- W3036698330 cites W2963131515 @default.
- W3036698330 cites W2963418621 @default.
- W3036698330 cites W3098724151 @default.
- W3036698330 cites W3204708751 @default.
- W3036698330 cites W617206983 @default.
- W3036698330 cites W101914685 @default.
- W3036698330 cites W2189568153 @default.
- W3036698330 cites W2915225592 @default.
- W3036698330 doi "https://doi.org/10.48550/arxiv.1908.03853" @default.
- W3036698330 hasPublicationYear "2019" @default.
- W3036698330 type Work @default.
- W3036698330 sameAs 3036698330 @default.
- W3036698330 citedByCount "4" @default.
- W3036698330 countsByYear W30366983302021 @default.
- W3036698330 crossrefType "posted-content" @default.
- W3036698330 hasAuthorship W3036698330A5018163206 @default.
- W3036698330 hasAuthorship W3036698330A5049816813 @default.
- W3036698330 hasAuthorship W3036698330A5053086539 @default.
- W3036698330 hasAuthorship W3036698330A5056314900 @default.
- W3036698330 hasBestOaLocation W30366983301 @default.
- W3036698330 hasConcept C134306372 @default.
- W3036698330 hasConcept C162324750 @default.
- W3036698330 hasConcept C163681178 @default.
- W3036698330 hasConcept C17744445 @default.
- W3036698330 hasConcept C182310444 @default.
- W3036698330 hasConcept C191795146 @default.
- W3036698330 hasConcept C199539241 @default.
- W3036698330 hasConcept C2777303404 @default.
- W3036698330 hasConcept C33923547 @default.
- W3036698330 hasConcept C50522688 @default.