Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036700458> ?p ?o ?g. }
- W3036700458 endingPage "800" @default.
- W3036700458 startingPage "763" @default.
- W3036700458 abstract "Purpose Trust is one of the main pillars of many communication and interaction domains. Computing is no exception. Fog computing (FC) has emerged as mitigation of several cloud computing limitations. However, selecting a trustworthy node from the fog network still presents serious challenges. This paper aims to propose an algorithm intended to mitigate the trust and the security issues related to selecting a node of a fog network. Design/methodology/approach The proposed model/algorithm is based on two main concepts, namely, machine learning using fuzzy neural networks (FNNs) and the weighted weakest link (WWL) algorithm. The crux of the proposed model is to be trained, validated and used to classify the fog nodes according to their trust scores. A total of 2,482 certified computing products, in addition to a set of nodes composed of multiple items, are used to train, validate and test the proposed model. A scenario including nodes composed of multiple computing items is designed for applying and evaluating the performance of the proposed model/algorithm. Findings The results show a well-performing trust model with an accuracy of 0.9996. Thus, the end-users of FC services adopting the proposed approach could be more confident when selecting elected fog nodes. The trained, validated and tested model was able to classify the nodes according to their trust level. The proposed model is a novel approach to fog nodes selection in a fog network. Research limitations/implications Certainly, all data could be collected, however, some features are very difficult to have their scores. Available techniques such as regression analysis and the use of the experts have their own limitations. Experts might be subjective, even though the author used the fuzzy group decision-making model to mitigate the subjectivity effect. A methodical evaluation by specialized bodies such as the security certification process is paramount to mitigate these issues. The author recommends the repetition of the same study when data form such bodies is available. Originality/value The novel combination of FNN and WWL in a trust model mitigates uncertainty, subjectivity and enables the trust classification of complex FC nodes. Furthermore, the combination also allowed the classification of fog nodes composed of diverse computing items, which is not possible without the WWL. The proposed algorithm will provide the required intelligence for end-users (devices) to make sound decisions when requesting fog services." @default.
- W3036700458 created "2020-06-25" @default.
- W3036700458 creator A5047820815 @default.
- W3036700458 date "2020-06-19" @default.
- W3036700458 modified "2023-10-18" @default.
- W3036700458 title "A novel trust model for fog computing using fuzzy neural networks and weighted weakest link" @default.
- W3036700458 cites W1526684454 @default.
- W3036700458 cites W1596020289 @default.
- W3036700458 cites W1612815802 @default.
- W3036700458 cites W1631420304 @default.
- W3036700458 cites W1678884566 @default.
- W3036700458 cites W1904483788 @default.
- W3036700458 cites W1912474698 @default.
- W3036700458 cites W1926090661 @default.
- W3036700458 cites W1967091789 @default.
- W3036700458 cites W1978637756 @default.
- W3036700458 cites W1982354667 @default.
- W3036700458 cites W1987371232 @default.
- W3036700458 cites W1998801495 @default.
- W3036700458 cites W2001901016 @default.
- W3036700458 cites W2003207947 @default.
- W3036700458 cites W2003544295 @default.
- W3036700458 cites W2007511616 @default.
- W3036700458 cites W2009802824 @default.
- W3036700458 cites W2019207321 @default.
- W3036700458 cites W2022600960 @default.
- W3036700458 cites W2022901666 @default.
- W3036700458 cites W2024836197 @default.
- W3036700458 cites W2025725145 @default.
- W3036700458 cites W2039062567 @default.
- W3036700458 cites W2045371716 @default.
- W3036700458 cites W2045699106 @default.
- W3036700458 cites W2047826381 @default.
- W3036700458 cites W2051812123 @default.
- W3036700458 cites W2056753864 @default.
- W3036700458 cites W2061860832 @default.
- W3036700458 cites W2064997230 @default.
- W3036700458 cites W2074709832 @default.
- W3036700458 cites W2079978676 @default.
- W3036700458 cites W2093798919 @default.
- W3036700458 cites W2104237724 @default.
- W3036700458 cites W2104882046 @default.
- W3036700458 cites W2114623221 @default.
- W3036700458 cites W2124513689 @default.
- W3036700458 cites W2126227940 @default.
- W3036700458 cites W2130234299 @default.
- W3036700458 cites W2140694235 @default.
- W3036700458 cites W2154126105 @default.
- W3036700458 cites W2160086265 @default.
- W3036700458 cites W2165699762 @default.
- W3036700458 cites W2219271656 @default.
- W3036700458 cites W2225196063 @default.
- W3036700458 cites W2275530856 @default.
- W3036700458 cites W2287334480 @default.
- W3036700458 cites W2338545932 @default.
- W3036700458 cites W2344315989 @default.
- W3036700458 cites W2746900439 @default.
- W3036700458 cites W2804147884 @default.
- W3036700458 cites W287460911 @default.
- W3036700458 cites W316857311 @default.
- W3036700458 cites W4238343920 @default.
- W3036700458 cites W4240033451 @default.
- W3036700458 cites W4242148066 @default.
- W3036700458 cites W89371509 @default.
- W3036700458 cites W1921506173 @default.
- W3036700458 cites W2512621991 @default.
- W3036700458 doi "https://doi.org/10.1108/ics-04-2019-0046" @default.
- W3036700458 hasPublicationYear "2020" @default.
- W3036700458 type Work @default.
- W3036700458 sameAs 3036700458 @default.
- W3036700458 citedByCount "5" @default.
- W3036700458 countsByYear W30367004582022 @default.
- W3036700458 countsByYear W30367004582023 @default.
- W3036700458 crossrefType "journal-article" @default.
- W3036700458 hasAuthorship W3036700458A5047820815 @default.
- W3036700458 hasConcept C111919701 @default.
- W3036700458 hasConcept C119857082 @default.
- W3036700458 hasConcept C124101348 @default.
- W3036700458 hasConcept C127413603 @default.
- W3036700458 hasConcept C154945302 @default.
- W3036700458 hasConcept C177264268 @default.
- W3036700458 hasConcept C199360897 @default.
- W3036700458 hasConcept C2776384856 @default.
- W3036700458 hasConcept C38652104 @default.
- W3036700458 hasConcept C41008148 @default.
- W3036700458 hasConcept C50644808 @default.
- W3036700458 hasConcept C58166 @default.
- W3036700458 hasConcept C62611344 @default.
- W3036700458 hasConcept C66938386 @default.
- W3036700458 hasConcept C79974875 @default.
- W3036700458 hasConceptScore W3036700458C111919701 @default.
- W3036700458 hasConceptScore W3036700458C119857082 @default.
- W3036700458 hasConceptScore W3036700458C124101348 @default.
- W3036700458 hasConceptScore W3036700458C127413603 @default.
- W3036700458 hasConceptScore W3036700458C154945302 @default.
- W3036700458 hasConceptScore W3036700458C177264268 @default.
- W3036700458 hasConceptScore W3036700458C199360897 @default.
- W3036700458 hasConceptScore W3036700458C2776384856 @default.