Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036700726> ?p ?o ?g. }
- W3036700726 endingPage "113531" @default.
- W3036700726 startingPage "113512" @default.
- W3036700726 abstract "Increasing use of renewable energy sources, liberalized energy markets and most importantly, the integrations of various monitoring, measuring and communication infrastructures into modern power system network offer the opportunity to build a resilient and efficient grid. However, it also brings about various threats of instabilities and security concerns in form of cyberattack, voltage instability, power quality (PQ) disturbance among others to the complex network. The need for efficient methodologies for quicker identification and detection of these problems have always been a priority to energy stakeholders over the years. In recent times, machine learning techniques (MLTs) have proven to be effective in numerous applications including power system studies. In the literature, various MLTs such as artificial neural networks (ANN), Decision Tree (DT), support vector machines (SVM) have been proposed, resulting in effective decision making and control actions in the secured and stable operations of the power system. Given this growing trend, this paper presents a comprehensive review on the most recent studies whereby MLTs were developed for power system security and stability especially in cyberattack detections, PQ disturbance studies and dynamic security assessment studies. The aim is to highlight the methodologies, achievements and more importantly the limitations in the classifier(s) design, dataset and test systems employed in the reviewed publications. A brief review of reinforcement learning (RL) and deep reinforcement learning (DRL) approaches to transient stability assessment is also presented. Finally, we highlighted some challenges and directions for future studies." @default.
- W3036700726 created "2020-06-25" @default.
- W3036700726 creator A5045534879 @default.
- W3036700726 creator A5061181605 @default.
- W3036700726 creator A5088501709 @default.
- W3036700726 date "2020-01-01" @default.
- W3036700726 modified "2023-10-14" @default.
- W3036700726 title "A Review of Machine Learning Approaches to Power System Security and Stability" @default.
- W3036700726 cites W1504899437 @default.
- W3036700726 cites W1523756834 @default.
- W3036700726 cites W1971262254 @default.
- W3036700726 cites W1977196195 @default.
- W3036700726 cites W1978718488 @default.
- W3036700726 cites W1979170328 @default.
- W3036700726 cites W1986065891 @default.
- W3036700726 cites W1989429174 @default.
- W3036700726 cites W1989583795 @default.
- W3036700726 cites W1996793722 @default.
- W3036700726 cites W2002674327 @default.
- W3036700726 cites W2012315090 @default.
- W3036700726 cites W2023585250 @default.
- W3036700726 cites W2031327100 @default.
- W3036700726 cites W2031912930 @default.
- W3036700726 cites W2041705870 @default.
- W3036700726 cites W2042858731 @default.
- W3036700726 cites W2044401459 @default.
- W3036700726 cites W2044777538 @default.
- W3036700726 cites W2049028244 @default.
- W3036700726 cites W2049763151 @default.
- W3036700726 cites W2055623839 @default.
- W3036700726 cites W2056676708 @default.
- W3036700726 cites W2061557473 @default.
- W3036700726 cites W2062463467 @default.
- W3036700726 cites W2062936627 @default.
- W3036700726 cites W2071605727 @default.
- W3036700726 cites W2081544377 @default.
- W3036700726 cites W2083785006 @default.
- W3036700726 cites W2091236895 @default.
- W3036700726 cites W2093746716 @default.
- W3036700726 cites W2097065005 @default.
- W3036700726 cites W2117255788 @default.
- W3036700726 cites W2129138344 @default.
- W3036700726 cites W2138007004 @default.
- W3036700726 cites W2143270442 @default.
- W3036700726 cites W2144283627 @default.
- W3036700726 cites W2145816469 @default.
- W3036700726 cites W2157428561 @default.
- W3036700726 cites W2159726856 @default.
- W3036700726 cites W2162101338 @default.
- W3036700726 cites W2167710876 @default.
- W3036700726 cites W2185508628 @default.
- W3036700726 cites W2187832864 @default.
- W3036700726 cites W2194607173 @default.
- W3036700726 cites W2221402103 @default.
- W3036700726 cites W2237654220 @default.
- W3036700726 cites W2244069093 @default.
- W3036700726 cites W2248460906 @default.
- W3036700726 cites W2315294203 @default.
- W3036700726 cites W2319367234 @default.
- W3036700726 cites W2332213682 @default.
- W3036700726 cites W2341443555 @default.
- W3036700726 cites W2399910219 @default.
- W3036700726 cites W2418469734 @default.
- W3036700726 cites W2500580066 @default.
- W3036700726 cites W2500771461 @default.
- W3036700726 cites W2517721298 @default.
- W3036700726 cites W2525022545 @default.
- W3036700726 cites W2526043039 @default.
- W3036700726 cites W2529692997 @default.
- W3036700726 cites W2540406226 @default.
- W3036700726 cites W2543158038 @default.
- W3036700726 cites W2547432958 @default.
- W3036700726 cites W2563673257 @default.
- W3036700726 cites W2570933518 @default.
- W3036700726 cites W2587209887 @default.
- W3036700726 cites W2591980212 @default.
- W3036700726 cites W2594162429 @default.
- W3036700726 cites W2597770063 @default.
- W3036700726 cites W2607152391 @default.
- W3036700726 cites W2611645847 @default.
- W3036700726 cites W2627044640 @default.
- W3036700726 cites W2727477768 @default.
- W3036700726 cites W2737928019 @default.
- W3036700726 cites W2741558524 @default.
- W3036700726 cites W2742481195 @default.
- W3036700726 cites W2753192453 @default.
- W3036700726 cites W2753352458 @default.
- W3036700726 cites W2765124243 @default.
- W3036700726 cites W2767111237 @default.
- W3036700726 cites W2781662152 @default.
- W3036700726 cites W2783810000 @default.
- W3036700726 cites W2789326499 @default.
- W3036700726 cites W2803978022 @default.
- W3036700726 cites W2804946269 @default.
- W3036700726 cites W2808011526 @default.
- W3036700726 cites W2883062506 @default.
- W3036700726 cites W2883295752 @default.
- W3036700726 cites W2884175803 @default.