Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036720599> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3036720599 endingPage "9" @default.
- W3036720599 startingPage "1" @default.
- W3036720599 abstract "In the application of moving target tracking in smart city, particle filter technology has the advantages of dealing with nonlinear and non-Gaussian problems, but when the standard particle filter uses resampling method to solve the degradation phenomenon, simply copying the particles will cause local optimization difficulties, resulting in unstable filtering accuracy. In this paper, a particle filter algorithm combined with quantum genetic algorithm (QGA) is proposed to solve the above problems. Aiming at the problem of particle exhaustion in particle filter, the algorithm adopts the method of combining evolutionary algorithm. Each particle in particle filter is regarded as a chromosome in genetic algorithm, and the fitness of each chromosome corresponds to the weight of particle. For each particle state with weight, the particle is first binary coded with qubit and quantum superposition state, and then quantum rotation gate is used for selection, crossing, mutation, and other operations, after a set number of iterations, the final particle set with accuracy and better diversity. In this paper, the filter state estimation and RMSF of <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>50</mml:mn></mml:math> and <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M2><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>100</mml:mn></mml:math> for nonlinear target tracking and the comparison of real state and state estimation trajectory in time-constant model under nonlinear target tracking are given. It can be seen that in nonlinear state, the quantum genetic and particle filter (QGPF) algorithm can achieve a higher accuracy of state estimation, and the filtering error of QGPF algorithm at each time is relatively uniform, which shows that the algorithm in this paper has better algorithm stability. Under the time-constant model, the algorithm fits the real state and realizes stable and accurate tracking." @default.
- W3036720599 created "2020-06-25" @default.
- W3036720599 creator A5007184853 @default.
- W3036720599 creator A5032196665 @default.
- W3036720599 creator A5062996222 @default.
- W3036720599 date "2020-06-20" @default.
- W3036720599 modified "2023-10-16" @default.
- W3036720599 title "Smart City Moving Target Tracking Algorithm Based on Quantum Genetic and Particle Filter" @default.
- W3036720599 cites W1926838357 @default.
- W3036720599 cites W1968669537 @default.
- W3036720599 cites W1972344181 @default.
- W3036720599 cites W2010522557 @default.
- W3036720599 cites W2055254373 @default.
- W3036720599 cites W2073117938 @default.
- W3036720599 cites W2126736494 @default.
- W3036720599 cites W2142974190 @default.
- W3036720599 cites W2146615705 @default.
- W3036720599 cites W2160694855 @default.
- W3036720599 cites W2317353366 @default.
- W3036720599 cites W2419340481 @default.
- W3036720599 cites W2560060220 @default.
- W3036720599 cites W2588847126 @default.
- W3036720599 cites W2594217106 @default.
- W3036720599 cites W2609389856 @default.
- W3036720599 cites W2759269579 @default.
- W3036720599 cites W2770159004 @default.
- W3036720599 cites W2790238118 @default.
- W3036720599 cites W2808279126 @default.
- W3036720599 cites W2809951001 @default.
- W3036720599 cites W2890879751 @default.
- W3036720599 cites W2897322754 @default.
- W3036720599 cites W2999062364 @default.
- W3036720599 cites W3000764807 @default.
- W3036720599 cites W4255133955 @default.
- W3036720599 doi "https://doi.org/10.1155/2020/8865298" @default.
- W3036720599 hasPublicationYear "2020" @default.
- W3036720599 type Work @default.
- W3036720599 sameAs 3036720599 @default.
- W3036720599 citedByCount "5" @default.
- W3036720599 countsByYear W30367205992021 @default.
- W3036720599 countsByYear W30367205992022 @default.
- W3036720599 countsByYear W30367205992023 @default.
- W3036720599 crossrefType "journal-article" @default.
- W3036720599 hasAuthorship W3036720599A5007184853 @default.
- W3036720599 hasAuthorship W3036720599A5032196665 @default.
- W3036720599 hasAuthorship W3036720599A5062996222 @default.
- W3036720599 hasBestOaLocation W30367205991 @default.
- W3036720599 hasConcept C11413529 @default.
- W3036720599 hasConcept C154945302 @default.
- W3036720599 hasConcept C157286648 @default.
- W3036720599 hasConcept C41008148 @default.
- W3036720599 hasConcept C52421305 @default.
- W3036720599 hasConceptScore W3036720599C11413529 @default.
- W3036720599 hasConceptScore W3036720599C154945302 @default.
- W3036720599 hasConceptScore W3036720599C157286648 @default.
- W3036720599 hasConceptScore W3036720599C41008148 @default.
- W3036720599 hasConceptScore W3036720599C52421305 @default.
- W3036720599 hasLocation W30367205991 @default.
- W3036720599 hasOpenAccess W3036720599 @default.
- W3036720599 hasPrimaryLocation W30367205991 @default.
- W3036720599 hasRelatedWork W1556286662 @default.
- W3036720599 hasRelatedWork W1824810860 @default.
- W3036720599 hasRelatedWork W1970672735 @default.
- W3036720599 hasRelatedWork W2127461635 @default.
- W3036720599 hasRelatedWork W2146615705 @default.
- W3036720599 hasRelatedWork W2188506513 @default.
- W3036720599 hasRelatedWork W2373508583 @default.
- W3036720599 hasRelatedWork W2383676241 @default.
- W3036720599 hasRelatedWork W2386767533 @default.
- W3036720599 hasRelatedWork W2388327599 @default.
- W3036720599 hasVolume "2020" @default.
- W3036720599 isParatext "false" @default.
- W3036720599 isRetracted "false" @default.
- W3036720599 magId "3036720599" @default.
- W3036720599 workType "article" @default.