Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036734579> ?p ?o ?g. }
- W3036734579 abstract "Optical multi-layer thin films are widely used in optical and energy applications requiring photonic designs. Engineers often design such structures based on their physical intuition. However, solely relying on human experts can be time-consuming and may lead to sub-optimal designs, especially when the design space is large. In this work, we frame the multi-layer optical design task as a sequence generation problem. A deep sequence generation network is proposed for efficiently generating optical layer sequences. We train the deep sequence generation network with proximal policy optimization to generate multi-layer structures with desired properties. The proposed method is applied to two energy applications. Our algorithm successfully discovered high-performance designs, outperforming structures designed by human experts in task 1, and a state-of-the-art memetic algorithm in task 2." @default.
- W3036734579 created "2020-06-25" @default.
- W3036734579 creator A5002874750 @default.
- W3036734579 creator A5012368728 @default.
- W3036734579 creator A5037458837 @default.
- W3036734579 creator A5076722448 @default.
- W3036734579 date "2020-06-21" @default.
- W3036734579 modified "2023-09-25" @default.
- W3036734579 title "Automated Optical Multi-layer Design via Deep Reinforcement Learning." @default.
- W3036734579 cites W1522301498 @default.
- W3036734579 cites W1810943226 @default.
- W3036734579 cites W1924770834 @default.
- W3036734579 cites W1965014506 @default.
- W3036734579 cites W1968614157 @default.
- W3036734579 cites W2005126631 @default.
- W3036734579 cites W2012051715 @default.
- W3036734579 cites W2062448889 @default.
- W3036734579 cites W2064675550 @default.
- W3036734579 cites W2076699264 @default.
- W3036734579 cites W2097053772 @default.
- W3036734579 cites W2121863487 @default.
- W3036734579 cites W2253160778 @default.
- W3036734579 cites W2276352557 @default.
- W3036734579 cites W2292755489 @default.
- W3036734579 cites W2295907767 @default.
- W3036734579 cites W2607264901 @default.
- W3036734579 cites W2617411258 @default.
- W3036734579 cites W2736601468 @default.
- W3036734579 cites W2766162919 @default.
- W3036734579 cites W2766447205 @default.
- W3036734579 cites W2772089359 @default.
- W3036734579 cites W2803281408 @default.
- W3036734579 cites W2806536390 @default.
- W3036734579 cites W2896926739 @default.
- W3036734579 cites W2916134072 @default.
- W3036734579 cites W2952332632 @default.
- W3036734579 cites W2963167310 @default.
- W3036734579 cites W2965959756 @default.
- W3036734579 cites W2970706905 @default.
- W3036734579 cites W2970971581 @default.
- W3036734579 cites W2982316857 @default.
- W3036734579 cites W2996246179 @default.
- W3036734579 cites W2996314716 @default.
- W3036734579 cites W3018195242 @default.
- W3036734579 cites W3023907686 @default.
- W3036734579 cites W3100751385 @default.
- W3036734579 hasPublicationYear "2020" @default.
- W3036734579 type Work @default.
- W3036734579 sameAs 3036734579 @default.
- W3036734579 citedByCount "1" @default.
- W3036734579 countsByYear W30367345792021 @default.
- W3036734579 crossrefType "posted-content" @default.
- W3036734579 hasAuthorship W3036734579A5002874750 @default.
- W3036734579 hasAuthorship W3036734579A5012368728 @default.
- W3036734579 hasAuthorship W3036734579A5037458837 @default.
- W3036734579 hasAuthorship W3036734579A5076722448 @default.
- W3036734579 hasConcept C108583219 @default.
- W3036734579 hasConcept C111472728 @default.
- W3036734579 hasConcept C113775141 @default.
- W3036734579 hasConcept C120314980 @default.
- W3036734579 hasConcept C127413603 @default.
- W3036734579 hasConcept C132010649 @default.
- W3036734579 hasConcept C138885662 @default.
- W3036734579 hasConcept C154945302 @default.
- W3036734579 hasConcept C171250308 @default.
- W3036734579 hasConcept C192562407 @default.
- W3036734579 hasConcept C201995342 @default.
- W3036734579 hasConcept C20788544 @default.
- W3036734579 hasConcept C2779227376 @default.
- W3036734579 hasConcept C2780451532 @default.
- W3036734579 hasConcept C41008148 @default.
- W3036734579 hasConcept C49040817 @default.
- W3036734579 hasConcept C97541855 @default.
- W3036734579 hasConceptScore W3036734579C108583219 @default.
- W3036734579 hasConceptScore W3036734579C111472728 @default.
- W3036734579 hasConceptScore W3036734579C113775141 @default.
- W3036734579 hasConceptScore W3036734579C120314980 @default.
- W3036734579 hasConceptScore W3036734579C127413603 @default.
- W3036734579 hasConceptScore W3036734579C132010649 @default.
- W3036734579 hasConceptScore W3036734579C138885662 @default.
- W3036734579 hasConceptScore W3036734579C154945302 @default.
- W3036734579 hasConceptScore W3036734579C171250308 @default.
- W3036734579 hasConceptScore W3036734579C192562407 @default.
- W3036734579 hasConceptScore W3036734579C201995342 @default.
- W3036734579 hasConceptScore W3036734579C20788544 @default.
- W3036734579 hasConceptScore W3036734579C2779227376 @default.
- W3036734579 hasConceptScore W3036734579C2780451532 @default.
- W3036734579 hasConceptScore W3036734579C41008148 @default.
- W3036734579 hasConceptScore W3036734579C49040817 @default.
- W3036734579 hasConceptScore W3036734579C97541855 @default.
- W3036734579 hasLocation W30367345791 @default.
- W3036734579 hasOpenAccess W3036734579 @default.
- W3036734579 hasPrimaryLocation W30367345791 @default.
- W3036734579 hasRelatedWork W2044010914 @default.
- W3036734579 hasRelatedWork W2205705824 @default.
- W3036734579 hasRelatedWork W2800886065 @default.
- W3036734579 hasRelatedWork W2887566712 @default.
- W3036734579 hasRelatedWork W2893748277 @default.
- W3036734579 hasRelatedWork W2921371084 @default.
- W3036734579 hasRelatedWork W2950433265 @default.