Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036750159> ?p ?o ?g. }
- W3036750159 endingPage "288" @default.
- W3036750159 startingPage "274" @default.
- W3036750159 abstract "To explore non-linear flow behaviour in porous media, e.g., packed bed of particles, this study focuses on the prediction of pressure drop/gradient by establishing empirical relations for Forchheimer coefficients based on artificial neural network (ANN) development. To facilitate this process, a large set of experimental data for pressure drop of water flow in various porous media is collected: part from the present experiment and other from those available in the literature. The newly generated ANN model is developed by considering the key influencing factors such as particle density, diameter, and shape, and column porosity. The new model shows excellent performance on the prediction of flow behaviour over previous empirical formula, which is attributed to the ANN's advantages on considering the inter-factor connections and their influences on the results. This proposed approach can provide a new means for analysing the nonlinear flow regime through porous media based on limited dataset." @default.
- W3036750159 created "2020-06-25" @default.
- W3036750159 creator A5013742559 @default.
- W3036750159 creator A5049017886 @default.
- W3036750159 creator A5055970594 @default.
- W3036750159 creator A5062801846 @default.
- W3036750159 date "2020-08-01" @default.
- W3036750159 modified "2023-10-14" @default.
- W3036750159 title "Artificial neural network model development for prediction of nonlinear flow in porous media" @default.
- W3036750159 cites W1775799718 @default.
- W3036750159 cites W1969498489 @default.
- W3036750159 cites W1974675564 @default.
- W3036750159 cites W1976738452 @default.
- W3036750159 cites W1977813873 @default.
- W3036750159 cites W1995984919 @default.
- W3036750159 cites W2026509834 @default.
- W3036750159 cites W2027636964 @default.
- W3036750159 cites W2028686659 @default.
- W3036750159 cites W2033399819 @default.
- W3036750159 cites W2034622718 @default.
- W3036750159 cites W2056088535 @default.
- W3036750159 cites W2058224488 @default.
- W3036750159 cites W2068046269 @default.
- W3036750159 cites W2069393179 @default.
- W3036750159 cites W2082919045 @default.
- W3036750159 cites W2083711477 @default.
- W3036750159 cites W2083956141 @default.
- W3036750159 cites W2089881353 @default.
- W3036750159 cites W2090218744 @default.
- W3036750159 cites W2092773707 @default.
- W3036750159 cites W2103501664 @default.
- W3036750159 cites W2107783960 @default.
- W3036750159 cites W2517872815 @default.
- W3036750159 cites W2520601216 @default.
- W3036750159 cites W2520917178 @default.
- W3036750159 cites W2569689877 @default.
- W3036750159 cites W2574379231 @default.
- W3036750159 cites W2581443695 @default.
- W3036750159 cites W2607076864 @default.
- W3036750159 cites W2749765532 @default.
- W3036750159 cites W2767537294 @default.
- W3036750159 cites W2775169859 @default.
- W3036750159 cites W2803499118 @default.
- W3036750159 cites W2884517955 @default.
- W3036750159 cites W2898208802 @default.
- W3036750159 cites W2913309878 @default.
- W3036750159 cites W773096762 @default.
- W3036750159 doi "https://doi.org/10.1016/j.powtec.2020.06.048" @default.
- W3036750159 hasPublicationYear "2020" @default.
- W3036750159 type Work @default.
- W3036750159 sameAs 3036750159 @default.
- W3036750159 citedByCount "7" @default.
- W3036750159 countsByYear W30367501592021 @default.
- W3036750159 countsByYear W30367501592022 @default.
- W3036750159 countsByYear W30367501592023 @default.
- W3036750159 crossrefType "journal-article" @default.
- W3036750159 hasAuthorship W3036750159A5013742559 @default.
- W3036750159 hasAuthorship W3036750159A5049017886 @default.
- W3036750159 hasAuthorship W3036750159A5055970594 @default.
- W3036750159 hasAuthorship W3036750159A5062801846 @default.
- W3036750159 hasConcept C105569014 @default.
- W3036750159 hasConcept C111919701 @default.
- W3036750159 hasConcept C114088122 @default.
- W3036750159 hasConcept C121332964 @default.
- W3036750159 hasConcept C127413603 @default.
- W3036750159 hasConcept C154945302 @default.
- W3036750159 hasConcept C158622935 @default.
- W3036750159 hasConcept C187320778 @default.
- W3036750159 hasConcept C192562407 @default.
- W3036750159 hasConcept C38349280 @default.
- W3036750159 hasConcept C41008148 @default.
- W3036750159 hasConcept C50644808 @default.
- W3036750159 hasConcept C57879066 @default.
- W3036750159 hasConcept C62520636 @default.
- W3036750159 hasConcept C6648577 @default.
- W3036750159 hasConcept C98045186 @default.
- W3036750159 hasConcept C98156149 @default.
- W3036750159 hasConceptScore W3036750159C105569014 @default.
- W3036750159 hasConceptScore W3036750159C111919701 @default.
- W3036750159 hasConceptScore W3036750159C114088122 @default.
- W3036750159 hasConceptScore W3036750159C121332964 @default.
- W3036750159 hasConceptScore W3036750159C127413603 @default.
- W3036750159 hasConceptScore W3036750159C154945302 @default.
- W3036750159 hasConceptScore W3036750159C158622935 @default.
- W3036750159 hasConceptScore W3036750159C187320778 @default.
- W3036750159 hasConceptScore W3036750159C192562407 @default.
- W3036750159 hasConceptScore W3036750159C38349280 @default.
- W3036750159 hasConceptScore W3036750159C41008148 @default.
- W3036750159 hasConceptScore W3036750159C50644808 @default.
- W3036750159 hasConceptScore W3036750159C57879066 @default.
- W3036750159 hasConceptScore W3036750159C62520636 @default.
- W3036750159 hasConceptScore W3036750159C6648577 @default.
- W3036750159 hasConceptScore W3036750159C98045186 @default.
- W3036750159 hasConceptScore W3036750159C98156149 @default.
- W3036750159 hasFunder F4320321001 @default.
- W3036750159 hasLocation W30367501591 @default.
- W3036750159 hasOpenAccess W3036750159 @default.
- W3036750159 hasPrimaryLocation W30367501591 @default.