Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036779512> ?p ?o ?g. }
- W3036779512 endingPage "124839" @default.
- W3036779512 startingPage "124839" @default.
- W3036779512 abstract "Natural systems, including the dynamics of engineered structures, are often considered complex; hence, engineers employ different statistical methods to understand these systems better. Analyzing these systems usually require accurate derivative estimations for better understanding, i.e. a measured displacement can be used to estimate the forces on a cylindrical structure in water by using its velocity, and acceleration estimations. In this study, we use a nonlinear method based on embedding theory and consider the time-delay coordinates of a signal with a fixed lag time. We propose a new method for estimating the derivatives of the signal via redefining the delay matrix. That is, the original signal is updated with the second principal component of the delay matrix in each derivation. We apply this simple method to both linear and nonlinear systems and show that derivatives of both clean and/or noisy signals can be estimated with sufficient accuracy. By optimizing the required embedding dimension for the best derivative approximation, we find a constant value for the embedding dimension, which illustrates the simplicity of the proposed method. Lastly, we compare the method with some common differentiation techniques." @default.
- W3036779512 created "2020-06-25" @default.
- W3036779512 creator A5025347164 @default.
- W3036779512 creator A5055210929 @default.
- W3036779512 creator A5072545789 @default.
- W3036779512 date "2020-10-01" @default.
- W3036779512 modified "2023-10-02" @default.
- W3036779512 title "Exploring time-delay-based numerical differentiation using principal component analysis" @default.
- W3036779512 cites W1262895620 @default.
- W3036779512 cites W1549386224 @default.
- W3036779512 cites W1581163326 @default.
- W3036779512 cites W1968140153 @default.
- W3036779512 cites W1975964493 @default.
- W3036779512 cites W1977884895 @default.
- W3036779512 cites W1978060721 @default.
- W3036779512 cites W1984391316 @default.
- W3036779512 cites W2001759490 @default.
- W3036779512 cites W2010461070 @default.
- W3036779512 cites W2031365860 @default.
- W3036779512 cites W2059521275 @default.
- W3036779512 cites W2088429582 @default.
- W3036779512 cites W2094300701 @default.
- W3036779512 cites W2094631910 @default.
- W3036779512 cites W2095409369 @default.
- W3036779512 cites W2097897435 @default.
- W3036779512 cites W2107753905 @default.
- W3036779512 cites W2114367635 @default.
- W3036779512 cites W2136271007 @default.
- W3036779512 cites W2137492046 @default.
- W3036779512 cites W2162800060 @default.
- W3036779512 cites W2169090605 @default.
- W3036779512 cites W2186879008 @default.
- W3036779512 cites W2531066444 @default.
- W3036779512 cites W2613227922 @default.
- W3036779512 cites W2617409200 @default.
- W3036779512 cites W2754781819 @default.
- W3036779512 cites W2807192431 @default.
- W3036779512 cites W2907146791 @default.
- W3036779512 cites W2912095888 @default.
- W3036779512 cites W2915622878 @default.
- W3036779512 cites W2921906780 @default.
- W3036779512 cites W2940986491 @default.
- W3036779512 cites W3004274742 @default.
- W3036779512 cites W3031280130 @default.
- W3036779512 cites W582910831 @default.
- W3036779512 cites W600475373 @default.
- W3036779512 cites W613352991 @default.
- W3036779512 cites W616193750 @default.
- W3036779512 doi "https://doi.org/10.1016/j.physa.2020.124839" @default.
- W3036779512 hasPublicationYear "2020" @default.
- W3036779512 type Work @default.
- W3036779512 sameAs 3036779512 @default.
- W3036779512 citedByCount "1" @default.
- W3036779512 countsByYear W30367795122021 @default.
- W3036779512 crossrefType "journal-article" @default.
- W3036779512 hasAuthorship W3036779512A5025347164 @default.
- W3036779512 hasAuthorship W3036779512A5055210929 @default.
- W3036779512 hasAuthorship W3036779512A5072545789 @default.
- W3036779512 hasBestOaLocation W30367795121 @default.
- W3036779512 hasConcept C106487976 @default.
- W3036779512 hasConcept C107551265 @default.
- W3036779512 hasConcept C111472728 @default.
- W3036779512 hasConcept C11413529 @default.
- W3036779512 hasConcept C117896860 @default.
- W3036779512 hasConcept C121332964 @default.
- W3036779512 hasConcept C126255220 @default.
- W3036779512 hasConcept C138885662 @default.
- W3036779512 hasConcept C154945302 @default.
- W3036779512 hasConcept C15744967 @default.
- W3036779512 hasConcept C158622935 @default.
- W3036779512 hasConcept C159985019 @default.
- W3036779512 hasConcept C192562407 @default.
- W3036779512 hasConcept C199360897 @default.
- W3036779512 hasConcept C202444582 @default.
- W3036779512 hasConcept C27438332 @default.
- W3036779512 hasConcept C2775924081 @default.
- W3036779512 hasConcept C2779843651 @default.
- W3036779512 hasConcept C2780586882 @default.
- W3036779512 hasConcept C33676613 @default.
- W3036779512 hasConcept C33923547 @default.
- W3036779512 hasConcept C41008148 @default.
- W3036779512 hasConcept C41608201 @default.
- W3036779512 hasConcept C47446073 @default.
- W3036779512 hasConcept C542102704 @default.
- W3036779512 hasConcept C62520636 @default.
- W3036779512 hasConcept C74650414 @default.
- W3036779512 hasConceptScore W3036779512C106487976 @default.
- W3036779512 hasConceptScore W3036779512C107551265 @default.
- W3036779512 hasConceptScore W3036779512C111472728 @default.
- W3036779512 hasConceptScore W3036779512C11413529 @default.
- W3036779512 hasConceptScore W3036779512C117896860 @default.
- W3036779512 hasConceptScore W3036779512C121332964 @default.
- W3036779512 hasConceptScore W3036779512C126255220 @default.
- W3036779512 hasConceptScore W3036779512C138885662 @default.
- W3036779512 hasConceptScore W3036779512C154945302 @default.
- W3036779512 hasConceptScore W3036779512C15744967 @default.
- W3036779512 hasConceptScore W3036779512C158622935 @default.
- W3036779512 hasConceptScore W3036779512C159985019 @default.