Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036793048> ?p ?o ?g. }
- W3036793048 abstract "Abstract A nonparametric method for comparing multiple forecast models is developed and implemented. The hypothesis of Optimal Predictive Ability generalizes the Superior Predictive Ability hypothesis from a single given loss function to an entire class of loss functions. Distinction is drawn between General Loss functions, Convex Loss functions and Symmetric Convex Loss functions. The research hypothesis is formulated in terms of moment inequality conditions. The empirical moment conditions are reduced to an exact and finite system of linear inequalities based on piecewise-linear loss functions. The hypothesis can be tested in a statistically consistent way using a blockwise Empirical Likelihood Ratio test statistic. A computationally feasible test procedure computes the test statistic using Convex Optimization methods, and estimates conservative, data-dependent critical values using a majorizing chi-square limit distribution and a moment selection method. An empirical application to inflation forecasting reveals that a very large majority of thousands of forecast models are redundant, leaving predominantly Phillips Curve type models, when convexity and symmetry are assumed." @default.
- W3036793048 created "2020-06-25" @default.
- W3036793048 creator A5036553402 @default.
- W3036793048 creator A5065133641 @default.
- W3036793048 creator A5066770755 @default.
- W3036793048 creator A5069209796 @default.
- W3036793048 date "2018-01-01" @default.
- W3036793048 modified "2023-09-25" @default.
- W3036793048 title "Nonparametric Tests for Superior Predictive Ability" @default.
- W3036793048 cites W1974234363 @default.
- W3036793048 cites W1990096823 @default.
- W3036793048 cites W1992147656 @default.
- W3036793048 cites W1995118028 @default.
- W3036793048 cites W2004216344 @default.
- W3036793048 cites W2010168683 @default.
- W3036793048 cites W2010353172 @default.
- W3036793048 cites W2022776175 @default.
- W3036793048 cites W2027934280 @default.
- W3036793048 cites W2039262150 @default.
- W3036793048 cites W2042083033 @default.
- W3036793048 cites W2048484057 @default.
- W3036793048 cites W2050902901 @default.
- W3036793048 cites W2059255554 @default.
- W3036793048 cites W2060820907 @default.
- W3036793048 cites W2073487155 @default.
- W3036793048 cites W2080264604 @default.
- W3036793048 cites W2089260477 @default.
- W3036793048 cites W2116855184 @default.
- W3036793048 cites W2124818620 @default.
- W3036793048 cites W2135606128 @default.
- W3036793048 cites W2137684147 @default.
- W3036793048 cites W2141108525 @default.
- W3036793048 cites W2142647428 @default.
- W3036793048 cites W2148129922 @default.
- W3036793048 cites W2149575971 @default.
- W3036793048 cites W2150476991 @default.
- W3036793048 cites W2289848776 @default.
- W3036793048 cites W2496601513 @default.
- W3036793048 cites W2516170903 @default.
- W3036793048 cites W2605897727 @default.
- W3036793048 cites W2801549497 @default.
- W3036793048 cites W3121928014 @default.
- W3036793048 cites W3122890421 @default.
- W3036793048 cites W3123413067 @default.
- W3036793048 cites W3123490868 @default.
- W3036793048 cites W3123502360 @default.
- W3036793048 cites W3125202491 @default.
- W3036793048 cites W3125323209 @default.
- W3036793048 cites W3125848445 @default.
- W3036793048 cites W4206095492 @default.
- W3036793048 cites W4213124192 @default.
- W3036793048 cites W4213134887 @default.
- W3036793048 cites W4236308713 @default.
- W3036793048 cites W625278252 @default.
- W3036793048 doi "https://doi.org/10.2139/ssrn.3251944" @default.
- W3036793048 hasPublicationYear "2018" @default.
- W3036793048 type Work @default.
- W3036793048 sameAs 3036793048 @default.
- W3036793048 citedByCount "1" @default.
- W3036793048 countsByYear W30367930482021 @default.
- W3036793048 crossrefType "journal-article" @default.
- W3036793048 hasAuthorship W3036793048A5036553402 @default.
- W3036793048 hasAuthorship W3036793048A5065133641 @default.
- W3036793048 hasAuthorship W3036793048A5066770755 @default.
- W3036793048 hasAuthorship W3036793048A5069209796 @default.
- W3036793048 hasConcept C102366305 @default.
- W3036793048 hasConcept C105795698 @default.
- W3036793048 hasConcept C106159729 @default.
- W3036793048 hasConcept C112680207 @default.
- W3036793048 hasConcept C121332964 @default.
- W3036793048 hasConcept C134306372 @default.
- W3036793048 hasConcept C145446738 @default.
- W3036793048 hasConcept C149782125 @default.
- W3036793048 hasConcept C162324750 @default.
- W3036793048 hasConcept C164660894 @default.
- W3036793048 hasConcept C169857963 @default.
- W3036793048 hasConcept C17095337 @default.
- W3036793048 hasConcept C179254644 @default.
- W3036793048 hasConcept C2524010 @default.
- W3036793048 hasConcept C2781117939 @default.
- W3036793048 hasConcept C28826006 @default.
- W3036793048 hasConcept C33923547 @default.
- W3036793048 hasConcept C44249647 @default.
- W3036793048 hasConcept C72134830 @default.
- W3036793048 hasConcept C74650414 @default.
- W3036793048 hasConcept C87007009 @default.
- W3036793048 hasConcept C89128539 @default.
- W3036793048 hasConceptScore W3036793048C102366305 @default.
- W3036793048 hasConceptScore W3036793048C105795698 @default.
- W3036793048 hasConceptScore W3036793048C106159729 @default.
- W3036793048 hasConceptScore W3036793048C112680207 @default.
- W3036793048 hasConceptScore W3036793048C121332964 @default.
- W3036793048 hasConceptScore W3036793048C134306372 @default.
- W3036793048 hasConceptScore W3036793048C145446738 @default.
- W3036793048 hasConceptScore W3036793048C149782125 @default.
- W3036793048 hasConceptScore W3036793048C162324750 @default.
- W3036793048 hasConceptScore W3036793048C164660894 @default.
- W3036793048 hasConceptScore W3036793048C169857963 @default.
- W3036793048 hasConceptScore W3036793048C17095337 @default.
- W3036793048 hasConceptScore W3036793048C179254644 @default.