Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036832166> ?p ?o ?g. }
- W3036832166 abstract "Abstract Automatically detecting and grading cancerous regions on radical prostatectomy (RP) sections facilitates graphical and quantitative pathology reporting, potentially benefitting post-surgery prognosis, recurrence prediction, and treatment planning after RP. Promising results for detecting and grading prostate cancer on digital histopathology images have been reported using machine learning techniques. However, the importance and applicability of those methods have not been fully investigated. We computed three-class tissue component maps (TCMs) from the images, where each pixel was labeled as nuclei, lumina, or other. We applied seven different machine learning approaches: three non-deep learning classifiers with features extracted from TCMs, and four deep learning, using transfer learning with the 1) TCMs, 2) nuclei maps, 3) lumina maps, and 4) raw images for cancer detection and grading on whole-mount RP tissue sections. We performed leave-one-patient-out cross-validation against expert annotations using 286 whole-slide images from 68 patients. For both cancer detection and grading, transfer learning using TCMs performed best. Transfer learning using nuclei maps yielded slightly inferior overall performance, but the best performance for classifying higher-grade cancer. This suggests that 3-class TCMs provide the major cues for cancer detection and grading primarily using nucleus features, which are the most important information for identifying higher-grade cancer." @default.
- W3036832166 created "2020-06-25" @default.
- W3036832166 creator A5019768466 @default.
- W3036832166 creator A5021043943 @default.
- W3036832166 creator A5041767978 @default.
- W3036832166 creator A5046888497 @default.
- W3036832166 creator A5052986343 @default.
- W3036832166 creator A5055091318 @default.
- W3036832166 creator A5057713377 @default.
- W3036832166 creator A5060699372 @default.
- W3036832166 creator A5071439377 @default.
- W3036832166 date "2020-06-18" @default.
- W3036832166 modified "2023-10-06" @default.
- W3036832166 title "Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens" @default.
- W3036832166 cites W1545430154 @default.
- W3036832166 cites W1991348945 @default.
- W3036832166 cites W1993760967 @default.
- W3036832166 cites W2003295161 @default.
- W3036832166 cites W2024729210 @default.
- W3036832166 cites W2030041075 @default.
- W3036832166 cites W2044465660 @default.
- W3036832166 cites W2050452966 @default.
- W3036832166 cites W2050978844 @default.
- W3036832166 cites W2071844402 @default.
- W3036832166 cites W2083043726 @default.
- W3036832166 cites W2085130253 @default.
- W3036832166 cites W2102480024 @default.
- W3036832166 cites W2103137007 @default.
- W3036832166 cites W2117395293 @default.
- W3036832166 cites W2150195966 @default.
- W3036832166 cites W2159790321 @default.
- W3036832166 cites W2234007727 @default.
- W3036832166 cites W2314750935 @default.
- W3036832166 cites W2340422569 @default.
- W3036832166 cites W2401520370 @default.
- W3036832166 cites W2537109170 @default.
- W3036832166 cites W2753867498 @default.
- W3036832166 cites W2792301348 @default.
- W3036832166 cites W2892938835 @default.
- W3036832166 cites W2921197949 @default.
- W3036832166 cites W2945092046 @default.
- W3036832166 cites W2949226441 @default.
- W3036832166 cites W2956228567 @default.
- W3036832166 cites W2978639826 @default.
- W3036832166 cites W2990990887 @default.
- W3036832166 cites W2999091210 @default.
- W3036832166 cites W2999171691 @default.
- W3036832166 cites W4234583614 @default.
- W3036832166 cites W4247277608 @default.
- W3036832166 doi "https://doi.org/10.1038/s41598-020-66849-2" @default.
- W3036832166 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7303108" @default.
- W3036832166 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32555410" @default.
- W3036832166 hasPublicationYear "2020" @default.
- W3036832166 type Work @default.
- W3036832166 sameAs 3036832166 @default.
- W3036832166 citedByCount "18" @default.
- W3036832166 countsByYear W30368321662021 @default.
- W3036832166 countsByYear W30368321662022 @default.
- W3036832166 countsByYear W30368321662023 @default.
- W3036832166 crossrefType "journal-article" @default.
- W3036832166 hasAuthorship W3036832166A5019768466 @default.
- W3036832166 hasAuthorship W3036832166A5021043943 @default.
- W3036832166 hasAuthorship W3036832166A5041767978 @default.
- W3036832166 hasAuthorship W3036832166A5046888497 @default.
- W3036832166 hasAuthorship W3036832166A5052986343 @default.
- W3036832166 hasAuthorship W3036832166A5055091318 @default.
- W3036832166 hasAuthorship W3036832166A5057713377 @default.
- W3036832166 hasAuthorship W3036832166A5060699372 @default.
- W3036832166 hasAuthorship W3036832166A5071439377 @default.
- W3036832166 hasBestOaLocation W30368321661 @default.
- W3036832166 hasConcept C108583219 @default.
- W3036832166 hasConcept C119857082 @default.
- W3036832166 hasConcept C121608353 @default.
- W3036832166 hasConcept C126322002 @default.
- W3036832166 hasConcept C150899416 @default.
- W3036832166 hasConcept C153180895 @default.
- W3036832166 hasConcept C154945302 @default.
- W3036832166 hasConcept C18903297 @default.
- W3036832166 hasConcept C2776235491 @default.
- W3036832166 hasConcept C2777286243 @default.
- W3036832166 hasConcept C2777522853 @default.
- W3036832166 hasConcept C2779466945 @default.
- W3036832166 hasConcept C2780192828 @default.
- W3036832166 hasConcept C2985322473 @default.
- W3036832166 hasConcept C41008148 @default.
- W3036832166 hasConcept C71924100 @default.
- W3036832166 hasConcept C86803240 @default.
- W3036832166 hasConceptScore W3036832166C108583219 @default.
- W3036832166 hasConceptScore W3036832166C119857082 @default.
- W3036832166 hasConceptScore W3036832166C121608353 @default.
- W3036832166 hasConceptScore W3036832166C126322002 @default.
- W3036832166 hasConceptScore W3036832166C150899416 @default.
- W3036832166 hasConceptScore W3036832166C153180895 @default.
- W3036832166 hasConceptScore W3036832166C154945302 @default.
- W3036832166 hasConceptScore W3036832166C18903297 @default.
- W3036832166 hasConceptScore W3036832166C2776235491 @default.
- W3036832166 hasConceptScore W3036832166C2777286243 @default.
- W3036832166 hasConceptScore W3036832166C2777522853 @default.
- W3036832166 hasConceptScore W3036832166C2779466945 @default.
- W3036832166 hasConceptScore W3036832166C2780192828 @default.