Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036837013> ?p ?o ?g. }
- W3036837013 endingPage "107310" @default.
- W3036837013 startingPage "107310" @default.
- W3036837013 abstract "In this work, a framework is provided for identifying intracranial electroencephalography (iEEG) seizures based on discrete wavelet transform (DWT) analysis of iEEG signals using forward propagation and feedback neural networks. The performance of 5 different data sets combination classifications is studied using the probabilistic neural network (PNN), learning vector quantization neural network (LVQ) and Elman neural network (ENN). Different feature combinations serve as the input vectors of the classifiers to obtain the best outcomes. It has been found that PNN has less running time and provides better classification accuracy (CA) than ENN and LVQ classifiers for all 5 classification problems. It is worth noticing that the CA for the C-D classification task, which shows the status of pre-ictal versus post-ictal, has been greatly improved, and reached 83.13%. Hence, the epilepsy iEEG signals pattern recognition based on DWT statistical features using the PNN classifier is more suitable for forming a reliable, automatic classification system in order to assist doctors in diagnosis." @default.
- W3036837013 created "2020-06-25" @default.
- W3036837013 creator A5038886478 @default.
- W3036837013 creator A5059721354 @default.
- W3036837013 creator A5072948664 @default.
- W3036837013 date "2020-08-01" @default.
- W3036837013 modified "2023-10-16" @default.
- W3036837013 title "Identification of epilepsy from intracranial EEG signals by using different neural network models" @default.
- W3036837013 cites W1964168965 @default.
- W3036837013 cites W1979148805 @default.
- W3036837013 cites W1984164526 @default.
- W3036837013 cites W1992852845 @default.
- W3036837013 cites W1998711164 @default.
- W3036837013 cites W2016458295 @default.
- W3036837013 cites W2017092028 @default.
- W3036837013 cites W2027265522 @default.
- W3036837013 cites W2029746815 @default.
- W3036837013 cites W2034697419 @default.
- W3036837013 cites W2038421214 @default.
- W3036837013 cites W2041935121 @default.
- W3036837013 cites W2042682017 @default.
- W3036837013 cites W2053404959 @default.
- W3036837013 cites W2053744708 @default.
- W3036837013 cites W2065454702 @default.
- W3036837013 cites W2079118576 @default.
- W3036837013 cites W2081895431 @default.
- W3036837013 cites W2084938682 @default.
- W3036837013 cites W2087962094 @default.
- W3036837013 cites W2091989959 @default.
- W3036837013 cites W2102244548 @default.
- W3036837013 cites W2119234283 @default.
- W3036837013 cites W2138580453 @default.
- W3036837013 cites W2140434576 @default.
- W3036837013 cites W2518936540 @default.
- W3036837013 cites W2553015255 @default.
- W3036837013 cites W2559256361 @default.
- W3036837013 cites W2739428828 @default.
- W3036837013 cites W2790355824 @default.
- W3036837013 cites W2797042188 @default.
- W3036837013 cites W2799610518 @default.
- W3036837013 cites W2803865420 @default.
- W3036837013 cites W2997677635 @default.
- W3036837013 cites W4211013529 @default.
- W3036837013 cites W4248307879 @default.
- W3036837013 doi "https://doi.org/10.1016/j.compbiolchem.2020.107310" @default.
- W3036837013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32599460" @default.
- W3036837013 hasPublicationYear "2020" @default.
- W3036837013 type Work @default.
- W3036837013 sameAs 3036837013 @default.
- W3036837013 citedByCount "12" @default.
- W3036837013 countsByYear W30368370132021 @default.
- W3036837013 countsByYear W30368370132022 @default.
- W3036837013 countsByYear W30368370132023 @default.
- W3036837013 crossrefType "journal-article" @default.
- W3036837013 hasAuthorship W3036837013A5038886478 @default.
- W3036837013 hasAuthorship W3036837013A5059721354 @default.
- W3036837013 hasAuthorship W3036837013A5072948664 @default.
- W3036837013 hasConcept C119857082 @default.
- W3036837013 hasConcept C134342201 @default.
- W3036837013 hasConcept C153180895 @default.
- W3036837013 hasConcept C154945302 @default.
- W3036837013 hasConcept C15744967 @default.
- W3036837013 hasConcept C169760540 @default.
- W3036837013 hasConcept C175202392 @default.
- W3036837013 hasConcept C17755696 @default.
- W3036837013 hasConcept C196216189 @default.
- W3036837013 hasConcept C2778186239 @default.
- W3036837013 hasConcept C40567965 @default.
- W3036837013 hasConcept C41008148 @default.
- W3036837013 hasConcept C46286280 @default.
- W3036837013 hasConcept C47432892 @default.
- W3036837013 hasConcept C50644808 @default.
- W3036837013 hasConcept C522805319 @default.
- W3036837013 hasConcept C83665646 @default.
- W3036837013 hasConcept C95623464 @default.
- W3036837013 hasConceptScore W3036837013C119857082 @default.
- W3036837013 hasConceptScore W3036837013C134342201 @default.
- W3036837013 hasConceptScore W3036837013C153180895 @default.
- W3036837013 hasConceptScore W3036837013C154945302 @default.
- W3036837013 hasConceptScore W3036837013C15744967 @default.
- W3036837013 hasConceptScore W3036837013C169760540 @default.
- W3036837013 hasConceptScore W3036837013C175202392 @default.
- W3036837013 hasConceptScore W3036837013C17755696 @default.
- W3036837013 hasConceptScore W3036837013C196216189 @default.
- W3036837013 hasConceptScore W3036837013C2778186239 @default.
- W3036837013 hasConceptScore W3036837013C40567965 @default.
- W3036837013 hasConceptScore W3036837013C41008148 @default.
- W3036837013 hasConceptScore W3036837013C46286280 @default.
- W3036837013 hasConceptScore W3036837013C47432892 @default.
- W3036837013 hasConceptScore W3036837013C50644808 @default.
- W3036837013 hasConceptScore W3036837013C522805319 @default.
- W3036837013 hasConceptScore W3036837013C83665646 @default.
- W3036837013 hasConceptScore W3036837013C95623464 @default.
- W3036837013 hasLocation W30368370131 @default.
- W3036837013 hasLocation W30368370132 @default.
- W3036837013 hasOpenAccess W3036837013 @default.
- W3036837013 hasPrimaryLocation W30368370131 @default.
- W3036837013 hasRelatedWork W1967062067 @default.