Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036850634> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3036850634 abstract "Machine learning and its numerous variants have meanwhile become established tools in many areas of society. Several attempts have been made to apply machine learning to the prediction of the outcome of professional sports events and to exploit inefficiencies in the corresponding betting markets. On the example of tennis, this paper extends previous research by conducting one of the most extensive studies of its kind and applying a wide range of machine learning techniques to male and female professional singles matches. The paper shows that the average prediction accuracy cannot be increased to more than about 70%. Irrespective of the used model, most of the relevant information is embedded in the betting markets, and adding other match- and player-specific data does not lead to any significant improvement. Returns from applying predictions to the sports betting market are subject to high volatility and mainly negative over the longer term. This conclusion holds across most tested models, various money management strategies, and for backing the match favorites or outsiders. The use of model ensembles that combine the predictions from multiple approaches proves to be the most promising choice." @default.
- W3036850634 created "2020-06-25" @default.
- W3036850634 creator A5013605357 @default.
- W3036850634 date "2019-01-01" @default.
- W3036850634 modified "2023-09-25" @default.
- W3036850634 title "Sports Prediction and Betting Models in the Machine Learning Age: The Case of Tennis" @default.
- W3036850634 cites W2027659832 @default.
- W3036850634 cites W2035378550 @default.
- W3036850634 cites W2038309815 @default.
- W3036850634 cites W2049348684 @default.
- W3036850634 cites W2076063813 @default.
- W3036850634 cites W2083813456 @default.
- W3036850634 cites W2112316706 @default.
- W3036850634 cites W2133208030 @default.
- W3036850634 cites W2282821441 @default.
- W3036850634 cites W2762214424 @default.
- W3036850634 cites W2765440304 @default.
- W3036850634 cites W4241584625 @default.
- W3036850634 doi "https://doi.org/10.2139/ssrn.3506302" @default.
- W3036850634 hasPublicationYear "2019" @default.
- W3036850634 type Work @default.
- W3036850634 sameAs 3036850634 @default.
- W3036850634 citedByCount "1" @default.
- W3036850634 countsByYear W30368506342022 @default.
- W3036850634 crossrefType "journal-article" @default.
- W3036850634 hasAuthorship W3036850634A5013605357 @default.
- W3036850634 hasConcept C112698675 @default.
- W3036850634 hasConcept C119857082 @default.
- W3036850634 hasConcept C142362112 @default.
- W3036850634 hasConcept C144133560 @default.
- W3036850634 hasConcept C153349607 @default.
- W3036850634 hasConcept C154945302 @default.
- W3036850634 hasConcept C15744967 @default.
- W3036850634 hasConcept C2992444758 @default.
- W3036850634 hasConcept C41008148 @default.
- W3036850634 hasConcept C512170562 @default.
- W3036850634 hasConceptScore W3036850634C112698675 @default.
- W3036850634 hasConceptScore W3036850634C119857082 @default.
- W3036850634 hasConceptScore W3036850634C142362112 @default.
- W3036850634 hasConceptScore W3036850634C144133560 @default.
- W3036850634 hasConceptScore W3036850634C153349607 @default.
- W3036850634 hasConceptScore W3036850634C154945302 @default.
- W3036850634 hasConceptScore W3036850634C15744967 @default.
- W3036850634 hasConceptScore W3036850634C2992444758 @default.
- W3036850634 hasConceptScore W3036850634C41008148 @default.
- W3036850634 hasConceptScore W3036850634C512170562 @default.
- W3036850634 hasLocation W30368506341 @default.
- W3036850634 hasOpenAccess W3036850634 @default.
- W3036850634 hasPrimaryLocation W30368506341 @default.
- W3036850634 hasRelatedWork W1470425429 @default.
- W3036850634 hasRelatedWork W2961085424 @default.
- W3036850634 hasRelatedWork W3046775127 @default.
- W3036850634 hasRelatedWork W3107602296 @default.
- W3036850634 hasRelatedWork W3170094116 @default.
- W3036850634 hasRelatedWork W3209574120 @default.
- W3036850634 hasRelatedWork W3212493609 @default.
- W3036850634 hasRelatedWork W4205958290 @default.
- W3036850634 hasRelatedWork W4286629047 @default.
- W3036850634 hasRelatedWork W4224009465 @default.
- W3036850634 isParatext "false" @default.
- W3036850634 isRetracted "false" @default.
- W3036850634 magId "3036850634" @default.
- W3036850634 workType "article" @default.