Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036853876> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3036853876 endingPage "109880" @default.
- W3036853876 startingPage "109880" @default.
- W3036853876 abstract "Three-dimensional convolutional neural network (3D-CNN) is employed for automated analysis of atomic configuration of molecular dynamics (MD) simulation. Solid and liquid atoms in the solid-liquid biphasic system of various elements at high temperature are identified by a 3D-CNN architecture. Accuracy of 3D-CNN successfully achieves more than 90% independent of crystal structure, whereas accuracy of common neighbor analysis (CNA) is approximately 50% at most for the same system. 3D-CNN can extract the morphology of solid-liquid interface very clearly including roughness at atomistic scale. Moreover, 3D-CNN trained by the data set of a certain element (iron) can be applied for another element (tungsten) of same crystal structure without further training. It is significant in this study to shed light on a high potential of machine learning (ML)-based approach for automated analysis of atomistic configuration since it is not straightforward to develop an identifier of atomic configuration manually when we face a new problem out of existing methodologies." @default.
- W3036853876 created "2020-06-25" @default.
- W3036853876 creator A5027391384 @default.
- W3036853876 creator A5059410508 @default.
- W3036853876 date "2020-11-01" @default.
- W3036853876 modified "2023-10-18" @default.
- W3036853876 title "Machine learning approach to automated analysis of atomic configuration of molecular dynamics simulation" @default.
- W3036853876 cites W1522734439 @default.
- W3036853876 cites W1989649213 @default.
- W3036853876 cites W2007850701 @default.
- W3036853876 cites W2014733848 @default.
- W3036853876 cites W2019465613 @default.
- W3036853876 cites W2047968138 @default.
- W3036853876 cites W2072080088 @default.
- W3036853876 cites W2077818116 @default.
- W3036853876 cites W2078274638 @default.
- W3036853876 cites W2085528403 @default.
- W3036853876 cites W2091022394 @default.
- W3036853876 cites W2091344193 @default.
- W3036853876 cites W2094713022 @default.
- W3036853876 cites W2112796928 @default.
- W3036853876 cites W2117024762 @default.
- W3036853876 cites W2147415793 @default.
- W3036853876 cites W2177399444 @default.
- W3036853876 cites W2327438196 @default.
- W3036853876 cites W2421358336 @default.
- W3036853876 cites W2600784433 @default.
- W3036853876 cites W2634239610 @default.
- W3036853876 cites W2845260663 @default.
- W3036853876 cites W2884430236 @default.
- W3036853876 cites W2909840170 @default.
- W3036853876 cites W2919115771 @default.
- W3036853876 cites W2941671689 @default.
- W3036853876 cites W2945352231 @default.
- W3036853876 cites W3005302754 @default.
- W3036853876 cites W3027137009 @default.
- W3036853876 cites W3103133276 @default.
- W3036853876 cites W3105839808 @default.
- W3036853876 doi "https://doi.org/10.1016/j.commatsci.2020.109880" @default.
- W3036853876 hasPublicationYear "2020" @default.
- W3036853876 type Work @default.
- W3036853876 sameAs 3036853876 @default.
- W3036853876 citedByCount "14" @default.
- W3036853876 countsByYear W30368538762021 @default.
- W3036853876 countsByYear W30368538762022 @default.
- W3036853876 countsByYear W30368538762023 @default.
- W3036853876 crossrefType "journal-article" @default.
- W3036853876 hasAuthorship W3036853876A5027391384 @default.
- W3036853876 hasAuthorship W3036853876A5059410508 @default.
- W3036853876 hasBestOaLocation W30368538761 @default.
- W3036853876 hasConcept C147597530 @default.
- W3036853876 hasConcept C154504017 @default.
- W3036853876 hasConcept C154945302 @default.
- W3036853876 hasConcept C177264268 @default.
- W3036853876 hasConcept C185592680 @default.
- W3036853876 hasConcept C186060115 @default.
- W3036853876 hasConcept C199360897 @default.
- W3036853876 hasConcept C41008148 @default.
- W3036853876 hasConcept C459310 @default.
- W3036853876 hasConcept C50644808 @default.
- W3036853876 hasConcept C59593255 @default.
- W3036853876 hasConcept C81363708 @default.
- W3036853876 hasConcept C86803240 @default.
- W3036853876 hasConceptScore W3036853876C147597530 @default.
- W3036853876 hasConceptScore W3036853876C154504017 @default.
- W3036853876 hasConceptScore W3036853876C154945302 @default.
- W3036853876 hasConceptScore W3036853876C177264268 @default.
- W3036853876 hasConceptScore W3036853876C185592680 @default.
- W3036853876 hasConceptScore W3036853876C186060115 @default.
- W3036853876 hasConceptScore W3036853876C199360897 @default.
- W3036853876 hasConceptScore W3036853876C41008148 @default.
- W3036853876 hasConceptScore W3036853876C459310 @default.
- W3036853876 hasConceptScore W3036853876C50644808 @default.
- W3036853876 hasConceptScore W3036853876C59593255 @default.
- W3036853876 hasConceptScore W3036853876C81363708 @default.
- W3036853876 hasConceptScore W3036853876C86803240 @default.
- W3036853876 hasFunder F4320334764 @default.
- W3036853876 hasLocation W30368538761 @default.
- W3036853876 hasOpenAccess W3036853876 @default.
- W3036853876 hasPrimaryLocation W30368538761 @default.
- W3036853876 hasRelatedWork W1882848237 @default.
- W3036853876 hasRelatedWork W2314852338 @default.
- W3036853876 hasRelatedWork W2316776327 @default.
- W3036853876 hasRelatedWork W2328387788 @default.
- W3036853876 hasRelatedWork W2390777183 @default.
- W3036853876 hasRelatedWork W2748454020 @default.
- W3036853876 hasRelatedWork W3016958897 @default.
- W3036853876 hasRelatedWork W3119610945 @default.
- W3036853876 hasRelatedWork W3181746755 @default.
- W3036853876 hasRelatedWork W4252772812 @default.
- W3036853876 hasVolume "184" @default.
- W3036853876 isParatext "false" @default.
- W3036853876 isRetracted "false" @default.
- W3036853876 magId "3036853876" @default.
- W3036853876 workType "article" @default.