Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036880972> ?p ?o ?g. }
- W3036880972 endingPage "4506" @default.
- W3036880972 startingPage "4495" @default.
- W3036880972 abstract "Sketching is one common approach to query time series data for patterns of interest. Most existing solutions for matching the data with the interaction are based on an empirically modeled similarity function between the user's sketch and the time series data with limited efficiency and accuracy. In this article, we introduce a machine learning based solution for fast and accurate querying of time series data based on a swift sketching interaction. We build on existing LSTM technology (long short-term memory) to encode both the sketch and the time series data in a network with shared parameters. We use data from a user study to let the network learn a proper similarity function. We focus our approach on perceived similarities and achieve that the learned model also includes a user-side aspect. To the best of our knowledge, this is the first data-driven solution for querying time series data in visual analytics. Besides evaluating the accuracy and efficiency directly in a quantitative way, we also compare our solution to the recently published Qetch algorithm as well as the commonly used dynamic time warping (DTW) algorithm." @default.
- W3036880972 created "2020-06-25" @default.
- W3036880972 creator A5000695313 @default.
- W3036880972 creator A5000755776 @default.
- W3036880972 creator A5047733171 @default.
- W3036880972 date "2021-12-01" @default.
- W3036880972 modified "2023-09-27" @default.
- W3036880972 title "Sketch-Based Fast and Accurate Querying of Time Series Using Parameter-Sharing LSTM Networks" @default.
- W3036880972 cites W1530463500 @default.
- W3036880972 cites W1562291184 @default.
- W3036880972 cites W1565809441 @default.
- W3036880972 cites W1849277567 @default.
- W3036880972 cites W2009899978 @default.
- W3036880972 cites W2015217008 @default.
- W3036880972 cites W2036929578 @default.
- W3036880972 cites W2042661054 @default.
- W3036880972 cites W2064675550 @default.
- W3036880972 cites W2098759488 @default.
- W3036880972 cites W2100900426 @default.
- W3036880972 cites W2107878631 @default.
- W3036880972 cites W2109399414 @default.
- W3036880972 cites W2128160875 @default.
- W3036880972 cites W2157364932 @default.
- W3036880972 cites W2186845332 @default.
- W3036880972 cites W2587299461 @default.
- W3036880972 cites W2590252985 @default.
- W3036880972 cites W2598209472 @default.
- W3036880972 cites W2795442664 @default.
- W3036880972 cites W2795915595 @default.
- W3036880972 cites W2798990443 @default.
- W3036880972 cites W2815772147 @default.
- W3036880972 cites W2886887279 @default.
- W3036880972 cites W2941366772 @default.
- W3036880972 cites W2948919184 @default.
- W3036880972 cites W2951295732 @default.
- W3036880972 cites W2962530235 @default.
- W3036880972 cites W2963214037 @default.
- W3036880972 cites W2964101465 @default.
- W3036880972 cites W2991028016 @default.
- W3036880972 cites W4231974264 @default.
- W3036880972 cites W4251304284 @default.
- W3036880972 doi "https://doi.org/10.1109/tvcg.2020.3002950" @default.
- W3036880972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32746264" @default.
- W3036880972 hasPublicationYear "2021" @default.
- W3036880972 type Work @default.
- W3036880972 sameAs 3036880972 @default.
- W3036880972 citedByCount "11" @default.
- W3036880972 countsByYear W30368809722021 @default.
- W3036880972 countsByYear W30368809722022 @default.
- W3036880972 countsByYear W30368809722023 @default.
- W3036880972 crossrefType "journal-article" @default.
- W3036880972 hasAuthorship W3036880972A5000695313 @default.
- W3036880972 hasAuthorship W3036880972A5000755776 @default.
- W3036880972 hasAuthorship W3036880972A5047733171 @default.
- W3036880972 hasConcept C103278499 @default.
- W3036880972 hasConcept C104317684 @default.
- W3036880972 hasConcept C105795698 @default.
- W3036880972 hasConcept C11413529 @default.
- W3036880972 hasConcept C115961682 @default.
- W3036880972 hasConcept C119857082 @default.
- W3036880972 hasConcept C120665830 @default.
- W3036880972 hasConcept C121332964 @default.
- W3036880972 hasConcept C124101348 @default.
- W3036880972 hasConcept C132900626 @default.
- W3036880972 hasConcept C14036430 @default.
- W3036880972 hasConcept C143724316 @default.
- W3036880972 hasConcept C151406439 @default.
- W3036880972 hasConcept C151730666 @default.
- W3036880972 hasConcept C154945302 @default.
- W3036880972 hasConcept C159437735 @default.
- W3036880972 hasConcept C165064840 @default.
- W3036880972 hasConcept C185592680 @default.
- W3036880972 hasConcept C192209626 @default.
- W3036880972 hasConcept C207347870 @default.
- W3036880972 hasConcept C23123220 @default.
- W3036880972 hasConcept C2779231336 @default.
- W3036880972 hasConcept C33923547 @default.
- W3036880972 hasConcept C41008148 @default.
- W3036880972 hasConcept C55493867 @default.
- W3036880972 hasConcept C66746571 @default.
- W3036880972 hasConcept C78458016 @default.
- W3036880972 hasConcept C79158427 @default.
- W3036880972 hasConcept C86803240 @default.
- W3036880972 hasConcept C88516994 @default.
- W3036880972 hasConceptScore W3036880972C103278499 @default.
- W3036880972 hasConceptScore W3036880972C104317684 @default.
- W3036880972 hasConceptScore W3036880972C105795698 @default.
- W3036880972 hasConceptScore W3036880972C11413529 @default.
- W3036880972 hasConceptScore W3036880972C115961682 @default.
- W3036880972 hasConceptScore W3036880972C119857082 @default.
- W3036880972 hasConceptScore W3036880972C120665830 @default.
- W3036880972 hasConceptScore W3036880972C121332964 @default.
- W3036880972 hasConceptScore W3036880972C124101348 @default.
- W3036880972 hasConceptScore W3036880972C132900626 @default.
- W3036880972 hasConceptScore W3036880972C14036430 @default.
- W3036880972 hasConceptScore W3036880972C143724316 @default.
- W3036880972 hasConceptScore W3036880972C151406439 @default.
- W3036880972 hasConceptScore W3036880972C151730666 @default.