Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036893144> ?p ?o ?g. }
- W3036893144 abstract "Cine cardiac magnetic resonance imaging (MRI) is widely used for diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a recurrent neural network to simultaneously extract both spatial and temporal features from under-sampled, motion-blurred cine cardiac images for improved image quality. The experimental results demonstrate substantially improved image quality on two clinical test datasets. Also, our method enables data-driven frame interpolation at an enhanced temporal resolution. Compared with existing methods, our deep learning approach gives a superior performance in terms of structural similarity (SSIM) and peak signal-to-noise ratio (PSNR)." @default.
- W3036893144 created "2020-06-25" @default.
- W3036893144 creator A5004906371 @default.
- W3036893144 creator A5049086157 @default.
- W3036893144 creator A5051700680 @default.
- W3036893144 creator A5057851690 @default.
- W3036893144 creator A5077747761 @default.
- W3036893144 date "2020-06-22" @default.
- W3036893144 modified "2023-09-24" @default.
- W3036893144 title "Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network" @default.
- W3036893144 cites W1485009520 @default.
- W3036893144 cites W1686810756 @default.
- W3036893144 cites W1978914399 @default.
- W3036893144 cites W1983923103 @default.
- W3036893144 cites W2039325635 @default.
- W3036893144 cites W2042017296 @default.
- W3036893144 cites W2104470918 @default.
- W3036893144 cites W2105926169 @default.
- W3036893144 cites W2108892976 @default.
- W3036893144 cites W2155268695 @default.
- W3036893144 cites W2156739854 @default.
- W3036893144 cites W2168903001 @default.
- W3036893144 cites W2331128040 @default.
- W3036893144 cites W2479702039 @default.
- W3036893144 cites W2592024705 @default.
- W3036893144 cites W2592958993 @default.
- W3036893144 cites W2593228870 @default.
- W3036893144 cites W2594014149 @default.
- W3036893144 cites W2606576226 @default.
- W3036893144 cites W2608822622 @default.
- W3036893144 cites W2747898905 @default.
- W3036893144 cites W2794977498 @default.
- W3036893144 cites W2797196654 @default.
- W3036893144 cites W2804047627 @default.
- W3036893144 cites W2808495892 @default.
- W3036893144 cites W2866634454 @default.
- W3036893144 cites W2888022684 @default.
- W3036893144 cites W2915260409 @default.
- W3036893144 cites W2953977469 @default.
- W3036893144 cites W2962734274 @default.
- W3036893144 cites W2962807789 @default.
- W3036893144 cites W2963174698 @default.
- W3036893144 cites W2963470893 @default.
- W3036893144 cites W2964297772 @default.
- W3036893144 cites W2972703033 @default.
- W3036893144 cites W2977118703 @default.
- W3036893144 cites W2977559140 @default.
- W3036893144 cites W2988640488 @default.
- W3036893144 cites W3014605657 @default.
- W3036893144 cites W3100087914 @default.
- W3036893144 cites W3102015846 @default.
- W3036893144 cites W3102018640 @default.
- W3036893144 cites W3105445034 @default.
- W3036893144 doi "https://doi.org/10.48550/arxiv.2006.12700" @default.
- W3036893144 hasPublicationYear "2020" @default.
- W3036893144 type Work @default.
- W3036893144 sameAs 3036893144 @default.
- W3036893144 citedByCount "1" @default.
- W3036893144 countsByYear W30368931442021 @default.
- W3036893144 crossrefType "posted-content" @default.
- W3036893144 hasAuthorship W3036893144A5004906371 @default.
- W3036893144 hasAuthorship W3036893144A5049086157 @default.
- W3036893144 hasAuthorship W3036893144A5051700680 @default.
- W3036893144 hasAuthorship W3036893144A5057851690 @default.
- W3036893144 hasAuthorship W3036893144A5077747761 @default.
- W3036893144 hasBestOaLocation W30368931441 @default.
- W3036893144 hasConcept C103278499 @default.
- W3036893144 hasConcept C104114177 @default.
- W3036893144 hasConcept C108583219 @default.
- W3036893144 hasConcept C111335779 @default.
- W3036893144 hasConcept C115961682 @default.
- W3036893144 hasConcept C119666444 @default.
- W3036893144 hasConcept C121332964 @default.
- W3036893144 hasConcept C126838900 @default.
- W3036893144 hasConcept C137800194 @default.
- W3036893144 hasConcept C143409427 @default.
- W3036893144 hasConcept C153180895 @default.
- W3036893144 hasConcept C154945302 @default.
- W3036893144 hasConcept C157787499 @default.
- W3036893144 hasConcept C2524010 @default.
- W3036893144 hasConcept C2776008845 @default.
- W3036893144 hasConcept C2779010991 @default.
- W3036893144 hasConcept C31972630 @default.
- W3036893144 hasConcept C33923547 @default.
- W3036893144 hasConcept C41008148 @default.
- W3036893144 hasConcept C50644808 @default.
- W3036893144 hasConcept C55020928 @default.
- W3036893144 hasConcept C62520636 @default.
- W3036893144 hasConcept C71924100 @default.
- W3036893144 hasConceptScore W3036893144C103278499 @default.
- W3036893144 hasConceptScore W3036893144C104114177 @default.
- W3036893144 hasConceptScore W3036893144C108583219 @default.
- W3036893144 hasConceptScore W3036893144C111335779 @default.
- W3036893144 hasConceptScore W3036893144C115961682 @default.
- W3036893144 hasConceptScore W3036893144C119666444 @default.
- W3036893144 hasConceptScore W3036893144C121332964 @default.
- W3036893144 hasConceptScore W3036893144C126838900 @default.
- W3036893144 hasConceptScore W3036893144C137800194 @default.
- W3036893144 hasConceptScore W3036893144C143409427 @default.
- W3036893144 hasConceptScore W3036893144C153180895 @default.