Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036900661> ?p ?o ?g. }
- W3036900661 endingPage "101755" @default.
- W3036900661 startingPage "101755" @default.
- W3036900661 abstract "Brain networks based on various neuroimaging technologies, such as diffusion tensor image (DTI) and functional magnetic resonance imaging (fMRI), have been widely applied to brain disease analysis. Currently, there are several node-level structural measures (e.g., local clustering coefficients and node degrees) for representing and analyzing brain networks since they usually can reflect the topological structure of brain regions. However, these measures typically describe specific types of structural information, ignoring important network properties (i.e., small structural changes) that could further improve the performance of brain network analysis. To overcome this problem, in this paper, we first define a novel node-level structure embedding and alignment (nSEA) representation to accurately characterize the node-level structural information of the brain network. Different from existing measures that characterize a specific type of structural properties with a single value, our proposed nSEA method can learn a vector representation for each node, thus contain richer structure information to capture small structural changes. Furthermore, we develop an nSEA representation based learning (nSEAL) framework for brain disease analysis. Specifically, we first perform structural embedding to calculate node vector representations for each brain network and then align vector representations of all brain networks into the common space for two group-level network analyses, including a statistical analysis and brain disease classifications. Experiment results on a real schizophrenia dataset demonstrate that our proposed method not only discover disease-related brain regions that could help to better understand the pathology of brain diseases, but also improve the classification performance of brain diseases, compared with state-of-the-art methods." @default.
- W3036900661 created "2020-06-25" @default.
- W3036900661 creator A5018821033 @default.
- W3036900661 creator A5033256088 @default.
- W3036900661 creator A5054044789 @default.
- W3036900661 creator A5065313978 @default.
- W3036900661 creator A5087093956 @default.
- W3036900661 date "2020-10-01" @default.
- W3036900661 modified "2023-10-15" @default.
- W3036900661 title "A novel node-level structure embedding and alignment representation of structural networks for brain disease analysis" @default.
- W3036900661 cites W1457602677 @default.
- W3036900661 cites W1823816588 @default.
- W3036900661 cites W1910453372 @default.
- W3036900661 cites W1983485726 @default.
- W3036900661 cites W1992009922 @default.
- W3036900661 cites W2011383634 @default.
- W3036900661 cites W2019450648 @default.
- W3036900661 cites W2038068904 @default.
- W3036900661 cites W2040412343 @default.
- W3036900661 cites W2058046532 @default.
- W3036900661 cites W2059655841 @default.
- W3036900661 cites W2067825653 @default.
- W3036900661 cites W2069673779 @default.
- W3036900661 cites W2079399231 @default.
- W3036900661 cites W2085561705 @default.
- W3036900661 cites W2095293862 @default.
- W3036900661 cites W2096612923 @default.
- W3036900661 cites W2097632269 @default.
- W3036900661 cites W2148406463 @default.
- W3036900661 cites W2159936922 @default.
- W3036900661 cites W2167822639 @default.
- W3036900661 cites W2233976407 @default.
- W3036900661 cites W2343741871 @default.
- W3036900661 cites W2402346616 @default.
- W3036900661 cites W2510842841 @default.
- W3036900661 cites W2519381186 @default.
- W3036900661 cites W2583114732 @default.
- W3036900661 cites W2597410197 @default.
- W3036900661 cites W2753719175 @default.
- W3036900661 cites W2769516147 @default.
- W3036900661 cites W2791190473 @default.
- W3036900661 cites W2891059954 @default.
- W3036900661 cites W2963780471 @default.
- W3036900661 cites W2966036416 @default.
- W3036900661 cites W3005600289 @default.
- W3036900661 doi "https://doi.org/10.1016/j.media.2020.101755" @default.
- W3036900661 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32592983" @default.
- W3036900661 hasPublicationYear "2020" @default.
- W3036900661 type Work @default.
- W3036900661 sameAs 3036900661 @default.
- W3036900661 citedByCount "8" @default.
- W3036900661 countsByYear W30369006612020 @default.
- W3036900661 countsByYear W30369006612021 @default.
- W3036900661 countsByYear W30369006612022 @default.
- W3036900661 countsByYear W30369006612023 @default.
- W3036900661 crossrefType "journal-article" @default.
- W3036900661 hasAuthorship W3036900661A5018821033 @default.
- W3036900661 hasAuthorship W3036900661A5033256088 @default.
- W3036900661 hasAuthorship W3036900661A5054044789 @default.
- W3036900661 hasAuthorship W3036900661A5065313978 @default.
- W3036900661 hasAuthorship W3036900661A5087093956 @default.
- W3036900661 hasConcept C119857082 @default.
- W3036900661 hasConcept C126838900 @default.
- W3036900661 hasConcept C127413603 @default.
- W3036900661 hasConcept C142724271 @default.
- W3036900661 hasConcept C143409427 @default.
- W3036900661 hasConcept C149550507 @default.
- W3036900661 hasConcept C153180895 @default.
- W3036900661 hasConcept C154945302 @default.
- W3036900661 hasConcept C15744967 @default.
- W3036900661 hasConcept C169760540 @default.
- W3036900661 hasConcept C17744445 @default.
- W3036900661 hasConcept C199539241 @default.
- W3036900661 hasConcept C2776359362 @default.
- W3036900661 hasConcept C2779134260 @default.
- W3036900661 hasConcept C2991673738 @default.
- W3036900661 hasConcept C41008148 @default.
- W3036900661 hasConcept C58693492 @default.
- W3036900661 hasConcept C62611344 @default.
- W3036900661 hasConcept C66938386 @default.
- W3036900661 hasConcept C71924100 @default.
- W3036900661 hasConcept C73555534 @default.
- W3036900661 hasConcept C94625758 @default.
- W3036900661 hasConceptScore W3036900661C119857082 @default.
- W3036900661 hasConceptScore W3036900661C126838900 @default.
- W3036900661 hasConceptScore W3036900661C127413603 @default.
- W3036900661 hasConceptScore W3036900661C142724271 @default.
- W3036900661 hasConceptScore W3036900661C143409427 @default.
- W3036900661 hasConceptScore W3036900661C149550507 @default.
- W3036900661 hasConceptScore W3036900661C153180895 @default.
- W3036900661 hasConceptScore W3036900661C154945302 @default.
- W3036900661 hasConceptScore W3036900661C15744967 @default.
- W3036900661 hasConceptScore W3036900661C169760540 @default.
- W3036900661 hasConceptScore W3036900661C17744445 @default.
- W3036900661 hasConceptScore W3036900661C199539241 @default.
- W3036900661 hasConceptScore W3036900661C2776359362 @default.
- W3036900661 hasConceptScore W3036900661C2779134260 @default.
- W3036900661 hasConceptScore W3036900661C2991673738 @default.