Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036916097> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3036916097 startingPage "704" @default.
- W3036916097 abstract "A rule of thumb for obtaining good generalization in systems trained by examples is that one should use the smallest system that will fit the data. Unfortunately, it usually is not obvious what size is best; a system that is too small will not be able to learn the data while one that is just big enough may learn very slowly and be very sensitive to initial conditions and learning parameters. This paper is a survey of neural network pruning algorithms. The approach taken by the methods described here is to train a network that is larger than necessary and then remove the parts that are not needed. >" @default.
- W3036916097 created "2020-06-25" @default.
- W3036916097 creator A5070745271 @default.
- W3036916097 date "1993-01-01" @default.
- W3036916097 modified "2023-09-23" @default.
- W3036916097 title "Pruning Algorithms-A Survey" @default.
- W3036916097 hasPublicationYear "1993" @default.
- W3036916097 type Work @default.
- W3036916097 sameAs 3036916097 @default.
- W3036916097 citedByCount "3" @default.
- W3036916097 crossrefType "journal-article" @default.
- W3036916097 hasAuthorship W3036916097A5070745271 @default.
- W3036916097 hasConcept C108010975 @default.
- W3036916097 hasConcept C11413529 @default.
- W3036916097 hasConcept C119857082 @default.
- W3036916097 hasConcept C134306372 @default.
- W3036916097 hasConcept C154945302 @default.
- W3036916097 hasConcept C177148314 @default.
- W3036916097 hasConcept C33923547 @default.
- W3036916097 hasConcept C41008148 @default.
- W3036916097 hasConcept C50644808 @default.
- W3036916097 hasConcept C6557445 @default.
- W3036916097 hasConcept C86803240 @default.
- W3036916097 hasConcept C89246107 @default.
- W3036916097 hasConceptScore W3036916097C108010975 @default.
- W3036916097 hasConceptScore W3036916097C11413529 @default.
- W3036916097 hasConceptScore W3036916097C119857082 @default.
- W3036916097 hasConceptScore W3036916097C134306372 @default.
- W3036916097 hasConceptScore W3036916097C154945302 @default.
- W3036916097 hasConceptScore W3036916097C177148314 @default.
- W3036916097 hasConceptScore W3036916097C33923547 @default.
- W3036916097 hasConceptScore W3036916097C41008148 @default.
- W3036916097 hasConceptScore W3036916097C50644808 @default.
- W3036916097 hasConceptScore W3036916097C6557445 @default.
- W3036916097 hasConceptScore W3036916097C86803240 @default.
- W3036916097 hasConceptScore W3036916097C89246107 @default.
- W3036916097 hasIssue "5" @default.
- W3036916097 hasLocation W30369160971 @default.
- W3036916097 hasOpenAccess W3036916097 @default.
- W3036916097 hasPrimaryLocation W30369160971 @default.
- W3036916097 hasRelatedWork W1586240767 @default.
- W3036916097 hasRelatedWork W2013541926 @default.
- W3036916097 hasRelatedWork W2183317041 @default.
- W3036916097 hasRelatedWork W2186091528 @default.
- W3036916097 hasRelatedWork W2217099143 @default.
- W3036916097 hasRelatedWork W2247148075 @default.
- W3036916097 hasRelatedWork W2339882134 @default.
- W3036916097 hasRelatedWork W2574219039 @default.
- W3036916097 hasRelatedWork W2586218966 @default.
- W3036916097 hasRelatedWork W2806227939 @default.
- W3036916097 hasRelatedWork W2806381151 @default.
- W3036916097 hasRelatedWork W2889601771 @default.
- W3036916097 hasRelatedWork W2965127139 @default.
- W3036916097 hasRelatedWork W2966464106 @default.
- W3036916097 hasRelatedWork W2980692935 @default.
- W3036916097 hasRelatedWork W2993925074 @default.
- W3036916097 hasRelatedWork W3048000637 @default.
- W3036916097 hasRelatedWork W3186952376 @default.
- W3036916097 hasRelatedWork W2099403350 @default.
- W3036916097 hasRelatedWork W2552946147 @default.
- W3036916097 hasVolume "4" @default.
- W3036916097 isParatext "false" @default.
- W3036916097 isRetracted "false" @default.
- W3036916097 magId "3036916097" @default.
- W3036916097 workType "article" @default.