Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036917966> ?p ?o ?g. }
- W3036917966 abstract "Epitranscriptome is an exciting area that studies different types of modifications in transcripts and the prediction of such modification sites from the transcript sequence is of significant interest. However, the scarcity of positive sites for most modifications imposes critical challenges for training robust algorithms. To circumvent this problem, we propose MR-GAN, a generative adversarial network (GAN) based model, which is trained in an unsupervised fashion on the entire pre-mRNA sequences to learn a low dimensional embedding of transcriptomic sequences. MR-GAN was then applied to extract embeddings of the sequences in a training dataset we created for eight epitranscriptome modifications, including m6A, m1A, m1G, m2G, m5C, m5U, 2'-O-Me, Pseudouridine (Ψ) and Dihydrouridine (D), of which the positive samples are very limited. Prediction models were trained based on the embeddings extracted by MR-GAN. We compared the prediction performance with the one-hot encoding of the training sequences and SRAMP, a state-of-the-art m6A site prediction algorithm and demonstrated that the learned embeddings outperform one-hot encoding by a significant margin for up to 15% improvement. Using MR-GAN, we also investigated the sequence motifs for each modification type and uncovered known motifs as well as new motifs not possible with sequences directly. The results demonstrated that transcriptome features extracted using unsupervised learning could lead to high precision for predicting multiple types of epitranscriptome modifications, even when the data size is small and extremely imbalanced." @default.
- W3036917966 created "2020-06-25" @default.
- W3036917966 creator A5010876405 @default.
- W3036917966 creator A5024976239 @default.
- W3036917966 creator A5028190064 @default.
- W3036917966 creator A5043640443 @default.
- W3036917966 creator A5068887242 @default.
- W3036917966 creator A5078442483 @default.
- W3036917966 date "2020-06-19" @default.
- W3036917966 modified "2023-10-18" @default.
- W3036917966 title "Predicting Sites of Epitranscriptome Modifications Using Unsupervised Representation Learning Based on Generative Adversarial Networks" @default.
- W3036917966 cites W1019830208 @default.
- W3036917966 cites W1186776093 @default.
- W3036917966 cites W1501531009 @default.
- W3036917966 cites W1947267113 @default.
- W3036917966 cites W2059136964 @default.
- W3036917966 cites W2060993590 @default.
- W3036917966 cites W2062920004 @default.
- W3036917966 cites W2065847836 @default.
- W3036917966 cites W2078964320 @default.
- W3036917966 cites W2103777723 @default.
- W3036917966 cites W2128016314 @default.
- W3036917966 cites W2157952888 @default.
- W3036917966 cites W2160784118 @default.
- W3036917966 cites W2198606573 @default.
- W3036917966 cites W2205505631 @default.
- W3036917966 cites W2269054226 @default.
- W3036917966 cites W2287984595 @default.
- W3036917966 cites W2292706259 @default.
- W3036917966 cites W2314476006 @default.
- W3036917966 cites W2323909273 @default.
- W3036917966 cites W2336509392 @default.
- W3036917966 cites W2503596412 @default.
- W3036917966 cites W2530594920 @default.
- W3036917966 cites W2579273737 @default.
- W3036917966 cites W2589225545 @default.
- W3036917966 cites W2607045834 @default.
- W3036917966 cites W2609814551 @default.
- W3036917966 cites W2620642044 @default.
- W3036917966 cites W2754983795 @default.
- W3036917966 cites W2762279748 @default.
- W3036917966 cites W2789834529 @default.
- W3036917966 cites W2912369228 @default.
- W3036917966 cites W2946217053 @default.
- W3036917966 cites W2951529022 @default.
- W3036917966 cites W2972082488 @default.
- W3036917966 cites W776567260 @default.
- W3036917966 doi "https://doi.org/10.3389/fphy.2020.00196" @default.
- W3036917966 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7710330" @default.
- W3036917966 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33274189" @default.
- W3036917966 hasPublicationYear "2020" @default.
- W3036917966 type Work @default.
- W3036917966 sameAs 3036917966 @default.
- W3036917966 citedByCount "8" @default.
- W3036917966 countsByYear W30369179662021 @default.
- W3036917966 countsByYear W30369179662022 @default.
- W3036917966 countsByYear W30369179662023 @default.
- W3036917966 crossrefType "journal-article" @default.
- W3036917966 hasAuthorship W3036917966A5010876405 @default.
- W3036917966 hasAuthorship W3036917966A5024976239 @default.
- W3036917966 hasAuthorship W3036917966A5028190064 @default.
- W3036917966 hasAuthorship W3036917966A5043640443 @default.
- W3036917966 hasAuthorship W3036917966A5068887242 @default.
- W3036917966 hasAuthorship W3036917966A5078442483 @default.
- W3036917966 hasBestOaLocation W30369179661 @default.
- W3036917966 hasConcept C104317684 @default.
- W3036917966 hasConcept C108583219 @default.
- W3036917966 hasConcept C119857082 @default.
- W3036917966 hasConcept C125411270 @default.
- W3036917966 hasConcept C153180895 @default.
- W3036917966 hasConcept C153957851 @default.
- W3036917966 hasConcept C154945302 @default.
- W3036917966 hasConcept C2778112365 @default.
- W3036917966 hasConcept C2779810333 @default.
- W3036917966 hasConcept C2988773926 @default.
- W3036917966 hasConcept C39890363 @default.
- W3036917966 hasConcept C41008148 @default.
- W3036917966 hasConcept C41608201 @default.
- W3036917966 hasConcept C54355233 @default.
- W3036917966 hasConcept C67705224 @default.
- W3036917966 hasConcept C70721500 @default.
- W3036917966 hasConcept C774472 @default.
- W3036917966 hasConcept C8038995 @default.
- W3036917966 hasConcept C86803240 @default.
- W3036917966 hasConceptScore W3036917966C104317684 @default.
- W3036917966 hasConceptScore W3036917966C108583219 @default.
- W3036917966 hasConceptScore W3036917966C119857082 @default.
- W3036917966 hasConceptScore W3036917966C125411270 @default.
- W3036917966 hasConceptScore W3036917966C153180895 @default.
- W3036917966 hasConceptScore W3036917966C153957851 @default.
- W3036917966 hasConceptScore W3036917966C154945302 @default.
- W3036917966 hasConceptScore W3036917966C2778112365 @default.
- W3036917966 hasConceptScore W3036917966C2779810333 @default.
- W3036917966 hasConceptScore W3036917966C2988773926 @default.
- W3036917966 hasConceptScore W3036917966C39890363 @default.
- W3036917966 hasConceptScore W3036917966C41008148 @default.
- W3036917966 hasConceptScore W3036917966C41608201 @default.
- W3036917966 hasConceptScore W3036917966C54355233 @default.
- W3036917966 hasConceptScore W3036917966C67705224 @default.
- W3036917966 hasConceptScore W3036917966C70721500 @default.