Matches in SemOpenAlex for { <https://semopenalex.org/work/W3036999885> ?p ?o ?g. }
- W3036999885 endingPage "105856" @default.
- W3036999885 startingPage "105856" @default.
- W3036999885 abstract "In countries where air pollution stations are unavailable or scarce, station measurements from other countries and atmospheric remote sensing could jointly provide information to estimate ambient air quality at a sufficiently fine resolution to study the relationship between air pollution exposure and health. Predicting NO2 concentration globally with sufficient spatial and temporal resolution and accuracy for health studies is, however, not a trivial task. Challenges are data deficiency, in terms of NO2 measurements and NO2 predictors, and the development of a statistical model that can typify the regional and continental differences, such as traffic regulations, energy sources, and local weather. We investigated the feasibility of mapping daytime and nighttime NO2 globally at a high spatial resolution (25 m), by including TROPOMI (TROPOspheric Monitoring Instrument) data and comparing various statistical learning techniques. We separated daytime (7:00 am - 9:59 pm) and nighttime (10:00 pm - 6:59 am) based on the local times. To study if one should build models for each country separately, national models in 4 selected countries (the US, China, Germany, Spain) were developed. We build the models for 2017 and used 3636 stations. Seven statistical learning techniques were applied and the impact of the predictors, model fitting, and predicting accuracy was compared between different techniques, national models, national and global models, and models with and without including the NO2 vertical column density retrieved from TROPOMI. The ensemble tree-based methods obtained higher accuracy compared to the linear regression-based methods in national and global models. The global tree-based methods obtained similar accuracy to national models. Different spatial prediction patterns are observed even when the prediction accuracy is very similar. Separating between day and night can be important for more accurate air pollution exposure assessment. The TROPOMI variable is ranked as one of the most important variables in the statistical learning techniques but adding it to global models that contain other precedent remote sensing products does not improve the prediction accuracy." @default.
- W3036999885 created "2020-07-02" @default.
- W3036999885 creator A5015491837 @default.
- W3036999885 creator A5051637261 @default.
- W3036999885 creator A5077042002 @default.
- W3036999885 creator A5078532329 @default.
- W3036999885 creator A5082780784 @default.
- W3036999885 date "2020-09-01" @default.
- W3036999885 modified "2023-10-16" @default.
- W3036999885 title "Evaluation of different methods and data sources to optimise modelling of NO2 at a global scale" @default.
- W3036999885 cites W1963738994 @default.
- W3036999885 cites W1966313220 @default.
- W3036999885 cites W1978936078 @default.
- W3036999885 cites W1983132585 @default.
- W3036999885 cites W1984470640 @default.
- W3036999885 cites W1996601154 @default.
- W3036999885 cites W1997106209 @default.
- W3036999885 cites W1999151475 @default.
- W3036999885 cites W2003207330 @default.
- W3036999885 cites W2053404990 @default.
- W3036999885 cites W2058664147 @default.
- W3036999885 cites W2062547380 @default.
- W3036999885 cites W2066544083 @default.
- W3036999885 cites W2070493638 @default.
- W3036999885 cites W2081552292 @default.
- W3036999885 cites W2095924213 @default.
- W3036999885 cites W2098637521 @default.
- W3036999885 cites W2103206342 @default.
- W3036999885 cites W2112001605 @default.
- W3036999885 cites W2118437074 @default.
- W3036999885 cites W2119019979 @default.
- W3036999885 cites W2121745948 @default.
- W3036999885 cites W2122825543 @default.
- W3036999885 cites W2128169271 @default.
- W3036999885 cites W2138017294 @default.
- W3036999885 cites W2139917573 @default.
- W3036999885 cites W2141039137 @default.
- W3036999885 cites W2146286141 @default.
- W3036999885 cites W2157076315 @default.
- W3036999885 cites W2165411636 @default.
- W3036999885 cites W2168634228 @default.
- W3036999885 cites W2291282024 @default.
- W3036999885 cites W2330583268 @default.
- W3036999885 cites W2477275132 @default.
- W3036999885 cites W2557456081 @default.
- W3036999885 cites W2616584304 @default.
- W3036999885 cites W2779555052 @default.
- W3036999885 cites W2792404378 @default.
- W3036999885 cites W2887788238 @default.
- W3036999885 cites W2888926545 @default.
- W3036999885 cites W2890701797 @default.
- W3036999885 cites W2891458940 @default.
- W3036999885 cites W2898247900 @default.
- W3036999885 cites W2907773908 @default.
- W3036999885 cites W2911964244 @default.
- W3036999885 cites W2935882650 @default.
- W3036999885 cites W2952297896 @default.
- W3036999885 cites W2982495467 @default.
- W3036999885 cites W3102027041 @default.
- W3036999885 cites W3102476541 @default.
- W3036999885 cites W4294541781 @default.
- W3036999885 doi "https://doi.org/10.1016/j.envint.2020.105856" @default.
- W3036999885 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32593835" @default.
- W3036999885 hasPublicationYear "2020" @default.
- W3036999885 type Work @default.
- W3036999885 sameAs 3036999885 @default.
- W3036999885 citedByCount "16" @default.
- W3036999885 countsByYear W30369998852021 @default.
- W3036999885 countsByYear W30369998852022 @default.
- W3036999885 countsByYear W30369998852023 @default.
- W3036999885 crossrefType "journal-article" @default.
- W3036999885 hasAuthorship W3036999885A5015491837 @default.
- W3036999885 hasAuthorship W3036999885A5051637261 @default.
- W3036999885 hasAuthorship W3036999885A5077042002 @default.
- W3036999885 hasAuthorship W3036999885A5078532329 @default.
- W3036999885 hasAuthorship W3036999885A5082780784 @default.
- W3036999885 hasBestOaLocation W30369998851 @default.
- W3036999885 hasConcept C105795698 @default.
- W3036999885 hasConcept C114289077 @default.
- W3036999885 hasConcept C126314574 @default.
- W3036999885 hasConcept C153294291 @default.
- W3036999885 hasConcept C178790620 @default.
- W3036999885 hasConcept C185592680 @default.
- W3036999885 hasConcept C194648359 @default.
- W3036999885 hasConcept C205649164 @default.
- W3036999885 hasConcept C2778755073 @default.
- W3036999885 hasConcept C33923547 @default.
- W3036999885 hasConcept C39432304 @default.
- W3036999885 hasConcept C48921125 @default.
- W3036999885 hasConcept C559116025 @default.
- W3036999885 hasConcept C58640448 @default.
- W3036999885 hasConcept C62649853 @default.
- W3036999885 hasConcept C9075549 @default.
- W3036999885 hasConceptScore W3036999885C105795698 @default.
- W3036999885 hasConceptScore W3036999885C114289077 @default.
- W3036999885 hasConceptScore W3036999885C126314574 @default.
- W3036999885 hasConceptScore W3036999885C153294291 @default.
- W3036999885 hasConceptScore W3036999885C178790620 @default.