Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037019107> ?p ?o ?g. }
- W3037019107 endingPage "109221" @default.
- W3037019107 startingPage "109221" @default.
- W3037019107 abstract "The extraction of oil is accompanied by water and sediments that, mixed with the oil, cause the formation of scale depositions in the pipelines walls promoting the reduction of the inner diameter of the pipes, making it difficult for the fluids to pass through interest. In this sense, there is a need to control the formation of these depositions to evaluate preventive and corrective measures regarding the waste management of these materials, as well as the optimization of oil extraction and transport processes. Noninvasive techniques such as gamma transmission and scattering can support the determination of the thickness of these deposits in pipes. This paper presents a novel methodology for prediction of scale with eccentric deposition in pipes used in the offshore oil industry and its approach is based on the principles of gamma densitometry and deep artificial neural networks (DNNs). To determine deposition thicknesses, a detection system has been developed that utilizes a 1 mm narrow beam geometry of collimation aperture comprising a source of 137Cs and three properly positioned 2″×2″ NaI(Tl) detectors around the system, pipe-scale-fluid. Crude oil was considered in the study, as well as eccentric deposits formed by barium sulfate, BaSO4. The theoretical models adopted a static flow regime and were developed using the MCNPX mathematical code and, secondly, used for the training and testing of the developed DNN model, a 7-layers deep rectifier neural network (DRNN). In addition, the hyperparameters of the DRNN were defined using a Baysian optimization method and its performance was validated via 10 experiments based on the K-Fold cross-validation technique. Following the proposed methodology, the DRNN was able to achieve, for the test sets (untrained samples), an average mean absolute error of 0.01734, mean absolute relative error of 0.29803% and R2 Score of 0.9998813 for the scale thickness prediction and an average accuracy of 100% for the scale position prediction. Therefore, the results show that the 7-layers DRNN presents good generalization capacity and is able to predict scale thickness with great precision, regardless of its position inside the tube." @default.
- W3037019107 created "2020-07-02" @default.
- W3037019107 creator A5007294779 @default.
- W3037019107 creator A5007579583 @default.
- W3037019107 creator A5010348148 @default.
- W3037019107 creator A5034736757 @default.
- W3037019107 creator A5046779719 @default.
- W3037019107 creator A5053622672 @default.
- W3037019107 creator A5075848079 @default.
- W3037019107 creator A5080003940 @default.
- W3037019107 date "2020-11-01" @default.
- W3037019107 modified "2023-10-16" @default.
- W3037019107 title "Determination of eccentric deposition thickness on offshore horizontal pipes by gamma-ray densitometry and artificial intelligence technique" @default.
- W3037019107 cites W1557622049 @default.
- W3037019107 cites W1708525466 @default.
- W3037019107 cites W1969658508 @default.
- W3037019107 cites W1981103881 @default.
- W3037019107 cites W1987272122 @default.
- W3037019107 cites W1987802967 @default.
- W3037019107 cites W1994506430 @default.
- W3037019107 cites W1996020380 @default.
- W3037019107 cites W1997430110 @default.
- W3037019107 cites W2013140941 @default.
- W3037019107 cites W2013672173 @default.
- W3037019107 cites W2023630074 @default.
- W3037019107 cites W2039681904 @default.
- W3037019107 cites W2040877251 @default.
- W3037019107 cites W2056868972 @default.
- W3037019107 cites W2065434747 @default.
- W3037019107 cites W2073634269 @default.
- W3037019107 cites W2076063813 @default.
- W3037019107 cites W2079929724 @default.
- W3037019107 cites W2090618797 @default.
- W3037019107 cites W2091884733 @default.
- W3037019107 cites W2149044583 @default.
- W3037019107 cites W2192203593 @default.
- W3037019107 cites W2464614383 @default.
- W3037019107 cites W2522029711 @default.
- W3037019107 cites W2534983733 @default.
- W3037019107 cites W2588182560 @default.
- W3037019107 cites W2746116459 @default.
- W3037019107 cites W2805033086 @default.
- W3037019107 cites W2887915696 @default.
- W3037019107 cites W2919115771 @default.
- W3037019107 cites W2952911043 @default.
- W3037019107 cites W2954316518 @default.
- W3037019107 cites W2965572961 @default.
- W3037019107 cites W2982534622 @default.
- W3037019107 doi "https://doi.org/10.1016/j.apradiso.2020.109221" @default.
- W3037019107 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32692653" @default.
- W3037019107 hasPublicationYear "2020" @default.
- W3037019107 type Work @default.
- W3037019107 sameAs 3037019107 @default.
- W3037019107 citedByCount "2" @default.
- W3037019107 countsByYear W30370191072021 @default.
- W3037019107 countsByYear W30370191072022 @default.
- W3037019107 crossrefType "journal-article" @default.
- W3037019107 hasAuthorship W3037019107A5007294779 @default.
- W3037019107 hasAuthorship W3037019107A5007579583 @default.
- W3037019107 hasAuthorship W3037019107A5010348148 @default.
- W3037019107 hasAuthorship W3037019107A5034736757 @default.
- W3037019107 hasAuthorship W3037019107A5046779719 @default.
- W3037019107 hasAuthorship W3037019107A5053622672 @default.
- W3037019107 hasAuthorship W3037019107A5075848079 @default.
- W3037019107 hasAuthorship W3037019107A5080003940 @default.
- W3037019107 hasConcept C120665830 @default.
- W3037019107 hasConcept C121332964 @default.
- W3037019107 hasConcept C127313418 @default.
- W3037019107 hasConcept C127413603 @default.
- W3037019107 hasConcept C151730666 @default.
- W3037019107 hasConcept C154945302 @default.
- W3037019107 hasConcept C175309249 @default.
- W3037019107 hasConcept C192562407 @default.
- W3037019107 hasConcept C199104240 @default.
- W3037019107 hasConcept C2816523 @default.
- W3037019107 hasConcept C34445779 @default.
- W3037019107 hasConcept C41008148 @default.
- W3037019107 hasConcept C50644808 @default.
- W3037019107 hasConcept C520434653 @default.
- W3037019107 hasConcept C64297162 @default.
- W3037019107 hasConcept C78519656 @default.
- W3037019107 hasConcept C78762247 @default.
- W3037019107 hasConcept C94915269 @default.
- W3037019107 hasConceptScore W3037019107C120665830 @default.
- W3037019107 hasConceptScore W3037019107C121332964 @default.
- W3037019107 hasConceptScore W3037019107C127313418 @default.
- W3037019107 hasConceptScore W3037019107C127413603 @default.
- W3037019107 hasConceptScore W3037019107C151730666 @default.
- W3037019107 hasConceptScore W3037019107C154945302 @default.
- W3037019107 hasConceptScore W3037019107C175309249 @default.
- W3037019107 hasConceptScore W3037019107C192562407 @default.
- W3037019107 hasConceptScore W3037019107C199104240 @default.
- W3037019107 hasConceptScore W3037019107C2816523 @default.
- W3037019107 hasConceptScore W3037019107C34445779 @default.
- W3037019107 hasConceptScore W3037019107C41008148 @default.
- W3037019107 hasConceptScore W3037019107C50644808 @default.
- W3037019107 hasConceptScore W3037019107C520434653 @default.
- W3037019107 hasConceptScore W3037019107C64297162 @default.