Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037030727> ?p ?o ?g. }
- W3037030727 endingPage "1190" @default.
- W3037030727 startingPage "1170" @default.
- W3037030727 abstract "Recently, many methods based on low-rank representation have been proposed for fabric defect detection. Most of them relax the low-rank decomposition problem to a nuclear norm minimization (NNM) problem to pursue the convexity of the objective function. When solving the standard NNM problem, matrix singular values have to be treated equally. This, however, would be impractical in the scenario of fabric defect detection as the matrix singular values have clear physical meanings, and thus, they should be treated differently. In this article, we propose a weighted double-low-rank decomposition method (WDLRD) to treat the matrix singular values differently by assigning different weights. Thus, the most important/distinguishing characteristics of a fabric image can be preserved. Another difference between WDLRD and the other existing low-rank-based methods is that WDLRD considers a defective fabric image being decomposed to two low-rank matrices, i.e., low-rank defect-free matrix and low-rank defect matrix, as the defect-free and defective regions are usually composed of homogeneous objects that have a high correlation. Besides, WDLRD is more robust for defect detection in various situations by adding a noise term to avoid noise or other interference on the fabric surface. In addition, a defect prior is incorporated into the objective function of WDLRD to guide locating the defective regions. The proposed optimization problem can be easily solved by an iterative algorithm based on augmented Lagrange multipliers. Experimental results on TILDA, periodically patterned fabric, and Textile & Apparel Artificial Intelligence databases show that the proposed WDLRD obtains better performance than state-of-the-art methods in locating the defective regions on fabric images. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —This article is motivated by the problem that the performance of fabric defect detection in the textile industry is poor. It is necessary to develop an effective method to improve the defect detection accuracy and reduce overall manufacturing cost. Existing automatic defect detection approaches usually contain two stages: first, capture fabric images from the weaving machine and then use a defect detection algorithm in a host computer to conduct a real-time inspection and give an alarm if defects occur. This article focuses on locating defects for given defective images after the procedure of binary classification (which determines an image as defective or defect free). The article proposes an objective function to mathematically interpret the optimization problem between fabric images and predictive defects. The optimal solution can be obtained by employing the alternating direction method of multipliers (ADMMs). The proposed method is described as a new defect detection algorithm. Extensive experiments were conducted to evaluate the algorithm, and the experimental results indicate that the proposed method is superior to many existing fabric defect detection methods. Preliminary experiments suggest that this method is feasible but has not yet been really used in production. In future research, we will collect more fabric images from the textile industry and develop large-scale databases for verifying the proposed method for real-life applications." @default.
- W3037030727 created "2020-07-02" @default.
- W3037030727 creator A5026796400 @default.
- W3037030727 creator A5043352718 @default.
- W3037030727 creator A5068442919 @default.
- W3037030727 creator A5069692042 @default.
- W3037030727 date "2021-07-01" @default.
- W3037030727 modified "2023-10-18" @default.
- W3037030727 title "Weighted Double-Low-Rank Decomposition With Application to Fabric Defect Detection" @default.
- W3037030727 cites W1486002010 @default.
- W3037030727 cites W1550959643 @default.
- W3037030727 cites W1600550542 @default.
- W3037030727 cites W1884984464 @default.
- W3037030727 cites W1974042113 @default.
- W3037030727 cites W1978904636 @default.
- W3037030727 cites W1995589954 @default.
- W3037030727 cites W1995905848 @default.
- W3037030727 cites W2032533296 @default.
- W3037030727 cites W2034851609 @default.
- W3037030727 cites W2047071281 @default.
- W3037030727 cites W2048695508 @default.
- W3037030727 cites W2082025208 @default.
- W3037030727 cites W2088398118 @default.
- W3037030727 cites W2103972604 @default.
- W3037030727 cites W2109639806 @default.
- W3037030727 cites W2109925328 @default.
- W3037030727 cites W2116090201 @default.
- W3037030727 cites W2120694107 @default.
- W3037030727 cites W2128057924 @default.
- W3037030727 cites W2133059825 @default.
- W3037030727 cites W2136367321 @default.
- W3037030727 cites W2145962650 @default.
- W3037030727 cites W2274280696 @default.
- W3037030727 cites W2344428106 @default.
- W3037030727 cites W2492385836 @default.
- W3037030727 cites W2505029951 @default.
- W3037030727 cites W2592867418 @default.
- W3037030727 cites W2611328865 @default.
- W3037030727 cites W2615908833 @default.
- W3037030727 cites W2766021674 @default.
- W3037030727 cites W2774430895 @default.
- W3037030727 cites W2793748730 @default.
- W3037030727 cites W2820727372 @default.
- W3037030727 cites W2831321715 @default.
- W3037030727 cites W2915358403 @default.
- W3037030727 cites W3104624268 @default.
- W3037030727 doi "https://doi.org/10.1109/tase.2020.2997718" @default.
- W3037030727 hasPublicationYear "2021" @default.
- W3037030727 type Work @default.
- W3037030727 sameAs 3037030727 @default.
- W3037030727 citedByCount "13" @default.
- W3037030727 countsByYear W30370307272021 @default.
- W3037030727 countsByYear W30370307272022 @default.
- W3037030727 countsByYear W30370307272023 @default.
- W3037030727 crossrefType "journal-article" @default.
- W3037030727 hasAuthorship W3037030727A5026796400 @default.
- W3037030727 hasAuthorship W3037030727A5043352718 @default.
- W3037030727 hasAuthorship W3037030727A5068442919 @default.
- W3037030727 hasAuthorship W3037030727A5069692042 @default.
- W3037030727 hasConcept C106487976 @default.
- W3037030727 hasConcept C11413529 @default.
- W3037030727 hasConcept C114614502 @default.
- W3037030727 hasConcept C121332964 @default.
- W3037030727 hasConcept C126255220 @default.
- W3037030727 hasConcept C13280743 @default.
- W3037030727 hasConcept C134306372 @default.
- W3037030727 hasConcept C154945302 @default.
- W3037030727 hasConcept C158693339 @default.
- W3037030727 hasConcept C159985019 @default.
- W3037030727 hasConcept C163716315 @default.
- W3037030727 hasConcept C164226766 @default.
- W3037030727 hasConcept C185798385 @default.
- W3037030727 hasConcept C192562407 @default.
- W3037030727 hasConcept C205649164 @default.
- W3037030727 hasConcept C22789450 @default.
- W3037030727 hasConcept C25023664 @default.
- W3037030727 hasConcept C27438332 @default.
- W3037030727 hasConcept C2777749129 @default.
- W3037030727 hasConcept C33923547 @default.
- W3037030727 hasConcept C41008148 @default.
- W3037030727 hasConcept C56372850 @default.
- W3037030727 hasConcept C62520636 @default.
- W3037030727 hasConcept C90199385 @default.
- W3037030727 hasConcept C92207270 @default.
- W3037030727 hasConceptScore W3037030727C106487976 @default.
- W3037030727 hasConceptScore W3037030727C11413529 @default.
- W3037030727 hasConceptScore W3037030727C114614502 @default.
- W3037030727 hasConceptScore W3037030727C121332964 @default.
- W3037030727 hasConceptScore W3037030727C126255220 @default.
- W3037030727 hasConceptScore W3037030727C13280743 @default.
- W3037030727 hasConceptScore W3037030727C134306372 @default.
- W3037030727 hasConceptScore W3037030727C154945302 @default.
- W3037030727 hasConceptScore W3037030727C158693339 @default.
- W3037030727 hasConceptScore W3037030727C159985019 @default.
- W3037030727 hasConceptScore W3037030727C163716315 @default.
- W3037030727 hasConceptScore W3037030727C164226766 @default.
- W3037030727 hasConceptScore W3037030727C185798385 @default.
- W3037030727 hasConceptScore W3037030727C192562407 @default.