Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037040315> ?p ?o ?g. }
- W3037040315 endingPage "1268" @default.
- W3037040315 startingPage "1260" @default.
- W3037040315 abstract "ConspectusThe terrestrial biosphere–atmosphere interface provides a key chemical, biological, and physical lower boundary for the atmosphere. The presence of vegetation itself modifies the physical boundary, or the biogeophysical aspects of the system, by controlling important climate drivers such as soil moisture, light environment, and temperature. The leaf surface area of the terrestrial biosphere provides additional surface area for emissions, and it can be up to 55% of the total Earth’s surface area during the boreal summer. Vegetation also influences the biogeochemical aspects of the system by emitting a broad suite of reactive trace gases such as biogenic volatile organic compound (BVOC) emissions and climate-relevant primary biological aerosol particles (PBAP). Many of these emissions are a function of meteorological and climatological conditions at the surface, including temperature, light environment, soil moisture, and winds. Once emitted, they can be processed in the troposphere through a suite of chemical reactions. BVOC can contribute to the formation of ozone and secondary organic aerosols (SOA), and PBAP can rupture to form smaller particles with climatic relevance. These emissions and subsequent aerosol products can influence atmospheric processes that affect the surface climate, such as the attenuation of radiation, the formation of greenhouse gases such as ozone that can feedback to surface air temperature, and the alteration of clouds and subsequent precipitation. These atmospheric changes can then feedback to the land surface and emissions themselves, creating positive or negative feedback loops that can dampen or amplify the emission response. For the dominant BVOC isoprene, the feedback response to temperature can be positive or negative depending on ambient temperatures that drive isoprene emissions. The feedback response to soil moisture and precipitation can be positive, negative, or uncoupled depending on the moisture content of the soil and the total atmospheric aerosol loading. For light, the isoprene response can be positive or negative depending on the role of diffuse light. Overall, these feedbacks highlight the dynamical response of the biosphere to changing atmospheric conditions across a range of time scales, from minutes for trace gases and aerosols, to months for phenological changes, to years for land cover and land use change. The dynamic aspect of this system requires us to understand, simulate, and predict the complex feedbacks between the biosphere and atmosphere and understand their role in the simulation and understanding of climate and global change. From the observational perspective, these feedbacks are challenging to identify in observations, and predictive modeling tools provide a crucial link for understanding how these feedbacks will change under warming climate scenarios." @default.
- W3037040315 created "2020-07-02" @default.
- W3037040315 creator A5014619946 @default.
- W3037040315 date "2020-06-26" @default.
- W3037040315 modified "2023-09-30" @default.
- W3037040315 title "Role of the Terrestrial Biosphere in Atmospheric Chemistry and Climate" @default.
- W3037040315 cites W1907185040 @default.
- W3037040315 cites W1968862760 @default.
- W3037040315 cites W2002570697 @default.
- W3037040315 cites W2005612323 @default.
- W3037040315 cites W2009699168 @default.
- W3037040315 cites W2011969813 @default.
- W3037040315 cites W2018337903 @default.
- W3037040315 cites W2019840426 @default.
- W3037040315 cites W2023842272 @default.
- W3037040315 cites W2023852418 @default.
- W3037040315 cites W2030454113 @default.
- W3037040315 cites W2041931582 @default.
- W3037040315 cites W2054574668 @default.
- W3037040315 cites W2054652969 @default.
- W3037040315 cites W2063429073 @default.
- W3037040315 cites W2064489183 @default.
- W3037040315 cites W2066972914 @default.
- W3037040315 cites W2081917368 @default.
- W3037040315 cites W2084833077 @default.
- W3037040315 cites W2089245274 @default.
- W3037040315 cites W2090646981 @default.
- W3037040315 cites W2093264248 @default.
- W3037040315 cites W2108350325 @default.
- W3037040315 cites W2117830870 @default.
- W3037040315 cites W2122574093 @default.
- W3037040315 cites W2126894581 @default.
- W3037040315 cites W2131196073 @default.
- W3037040315 cites W2140247361 @default.
- W3037040315 cites W2145192043 @default.
- W3037040315 cites W2162145369 @default.
- W3037040315 cites W2163429302 @default.
- W3037040315 cites W2163498389 @default.
- W3037040315 cites W2163557852 @default.
- W3037040315 cites W2171355244 @default.
- W3037040315 cites W2297352989 @default.
- W3037040315 cites W2535547627 @default.
- W3037040315 cites W2586009706 @default.
- W3037040315 cites W2614250595 @default.
- W3037040315 cites W2626907168 @default.
- W3037040315 cites W2739417383 @default.
- W3037040315 cites W2752318098 @default.
- W3037040315 cites W2773050709 @default.
- W3037040315 cites W2789874230 @default.
- W3037040315 cites W2790847493 @default.
- W3037040315 cites W2837007447 @default.
- W3037040315 cites W2887490719 @default.
- W3037040315 cites W2936375487 @default.
- W3037040315 cites W2944750746 @default.
- W3037040315 cites W2955601895 @default.
- W3037040315 cites W2960797162 @default.
- W3037040315 cites W2969825280 @default.
- W3037040315 cites W2998746625 @default.
- W3037040315 cites W3004459665 @default.
- W3037040315 cites W3020997862 @default.
- W3037040315 doi "https://doi.org/10.1021/acs.accounts.0c00116" @default.
- W3037040315 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32589392" @default.
- W3037040315 hasPublicationYear "2020" @default.
- W3037040315 type Work @default.
- W3037040315 sameAs 3037040315 @default.
- W3037040315 citedByCount "15" @default.
- W3037040315 countsByYear W30370403152021 @default.
- W3037040315 countsByYear W30370403152022 @default.
- W3037040315 countsByYear W30370403152023 @default.
- W3037040315 crossrefType "journal-article" @default.
- W3037040315 hasAuthorship W3037040315A5014619946 @default.
- W3037040315 hasBestOaLocation W30370403152 @default.
- W3037040315 hasConcept C107218244 @default.
- W3037040315 hasConcept C107872376 @default.
- W3037040315 hasConcept C110872660 @default.
- W3037040315 hasConcept C121332964 @default.
- W3037040315 hasConcept C127313418 @default.
- W3037040315 hasConcept C130047971 @default.
- W3037040315 hasConcept C130309983 @default.
- W3037040315 hasConcept C153294291 @default.
- W3037040315 hasConcept C15920480 @default.
- W3037040315 hasConcept C178790620 @default.
- W3037040315 hasConcept C185592680 @default.
- W3037040315 hasConcept C18903297 @default.
- W3037040315 hasConcept C1965285 @default.
- W3037040315 hasConcept C2779345167 @default.
- W3037040315 hasConcept C2780959689 @default.
- W3037040315 hasConcept C39432304 @default.
- W3037040315 hasConcept C49999975 @default.
- W3037040315 hasConcept C508106653 @default.
- W3037040315 hasConcept C521977710 @default.
- W3037040315 hasConcept C65440619 @default.
- W3037040315 hasConcept C65680412 @default.
- W3037040315 hasConcept C71915725 @default.
- W3037040315 hasConcept C86803240 @default.
- W3037040315 hasConcept C9075549 @default.
- W3037040315 hasConcept C91586092 @default.
- W3037040315 hasConceptScore W3037040315C107218244 @default.