Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037074658> ?p ?o ?g. }
- W3037074658 endingPage "4332" @default.
- W3037074658 startingPage "4332" @default.
- W3037074658 abstract "Wildfire damage severity census is a crucial activity for estimating monetary losses and for planning a prompt restoration of the affected areas. It consists in assigning, after a wildfire, a numerical damage/severity level, between 0 and 4, to each sub-area of the hit area. While burned area identification has been automatized by means of machine learning algorithms, the wildfire damage severity census operation is usually still performed manually and requires a significant effort of domain experts through the analysis of imagery and, sometimes, on-site missions. In this paper, we propose a novel supervised learning approach for the automatic estimation of the damage/severity level of the hit areas after the wildfire extinction. Specifically, the proposed approach, leveraging on the combination of a classification algorithm and a regression one, predicts the damage/severity level of the sub-areas of the area under analysis by processing a single post-fire satellite acquisition. Our approach has been validated in five different European countries and on 21 wildfires. It has proved to be robust for the application in several geographical contexts presenting similar geological aspects." @default.
- W3037074658 created "2020-07-02" @default.
- W3037074658 creator A5019445790 @default.
- W3037074658 creator A5049068292 @default.
- W3037074658 creator A5074057809 @default.
- W3037074658 date "2020-06-24" @default.
- W3037074658 modified "2023-09-26" @default.
- W3037074658 title "Double-Step U-Net: A Deep Learning-Based Approach for the Estimation of Wildfire Damage Severity through Sentinel-2 Satellite Data" @default.
- W3037074658 cites W1195341036 @default.
- W3037074658 cites W1998733631 @default.
- W3037074658 cites W2005420410 @default.
- W3037074658 cites W2015159529 @default.
- W3037074658 cites W2024249918 @default.
- W3037074658 cites W2058312673 @default.
- W3037074658 cites W2132294441 @default.
- W3037074658 cites W2144230836 @default.
- W3037074658 cites W2559468428 @default.
- W3037074658 cites W2586164282 @default.
- W3037074658 cites W2613179521 @default.
- W3037074658 cites W2623913549 @default.
- W3037074658 cites W2734353617 @default.
- W3037074658 cites W2769774644 @default.
- W3037074658 cites W2792301033 @default.
- W3037074658 cites W2807984376 @default.
- W3037074658 cites W2810851261 @default.
- W3037074658 cites W2887685367 @default.
- W3037074658 cites W2905880828 @default.
- W3037074658 cites W2922237835 @default.
- W3037074658 cites W2956190455 @default.
- W3037074658 cites W2958038879 @default.
- W3037074658 cites W2999410052 @default.
- W3037074658 cites W2999453397 @default.
- W3037074658 cites W3002173515 @default.
- W3037074658 cites W3003452346 @default.
- W3037074658 cites W3005928150 @default.
- W3037074658 cites W3008200123 @default.
- W3037074658 cites W3008514470 @default.
- W3037074658 doi "https://doi.org/10.3390/app10124332" @default.
- W3037074658 hasPublicationYear "2020" @default.
- W3037074658 type Work @default.
- W3037074658 sameAs 3037074658 @default.
- W3037074658 citedByCount "26" @default.
- W3037074658 countsByYear W30370746582020 @default.
- W3037074658 countsByYear W30370746582021 @default.
- W3037074658 countsByYear W30370746582022 @default.
- W3037074658 countsByYear W30370746582023 @default.
- W3037074658 crossrefType "journal-article" @default.
- W3037074658 hasAuthorship W3037074658A5019445790 @default.
- W3037074658 hasAuthorship W3037074658A5049068292 @default.
- W3037074658 hasAuthorship W3037074658A5074057809 @default.
- W3037074658 hasBestOaLocation W30370746581 @default.
- W3037074658 hasConcept C108583219 @default.
- W3037074658 hasConcept C116834253 @default.
- W3037074658 hasConcept C119857082 @default.
- W3037074658 hasConcept C127413603 @default.
- W3037074658 hasConcept C144024400 @default.
- W3037074658 hasConcept C146978453 @default.
- W3037074658 hasConcept C149923435 @default.
- W3037074658 hasConcept C154945302 @default.
- W3037074658 hasConcept C19269812 @default.
- W3037074658 hasConcept C201995342 @default.
- W3037074658 hasConcept C205649164 @default.
- W3037074658 hasConcept C2778102629 @default.
- W3037074658 hasConcept C2908647359 @default.
- W3037074658 hasConcept C41008148 @default.
- W3037074658 hasConcept C52130261 @default.
- W3037074658 hasConcept C59822182 @default.
- W3037074658 hasConcept C62649853 @default.
- W3037074658 hasConcept C86803240 @default.
- W3037074658 hasConcept C96250715 @default.
- W3037074658 hasConceptScore W3037074658C108583219 @default.
- W3037074658 hasConceptScore W3037074658C116834253 @default.
- W3037074658 hasConceptScore W3037074658C119857082 @default.
- W3037074658 hasConceptScore W3037074658C127413603 @default.
- W3037074658 hasConceptScore W3037074658C144024400 @default.
- W3037074658 hasConceptScore W3037074658C146978453 @default.
- W3037074658 hasConceptScore W3037074658C149923435 @default.
- W3037074658 hasConceptScore W3037074658C154945302 @default.
- W3037074658 hasConceptScore W3037074658C19269812 @default.
- W3037074658 hasConceptScore W3037074658C201995342 @default.
- W3037074658 hasConceptScore W3037074658C205649164 @default.
- W3037074658 hasConceptScore W3037074658C2778102629 @default.
- W3037074658 hasConceptScore W3037074658C2908647359 @default.
- W3037074658 hasConceptScore W3037074658C41008148 @default.
- W3037074658 hasConceptScore W3037074658C52130261 @default.
- W3037074658 hasConceptScore W3037074658C59822182 @default.
- W3037074658 hasConceptScore W3037074658C62649853 @default.
- W3037074658 hasConceptScore W3037074658C86803240 @default.
- W3037074658 hasConceptScore W3037074658C96250715 @default.
- W3037074658 hasFunder F4320332999 @default.
- W3037074658 hasIssue "12" @default.
- W3037074658 hasLocation W30370746581 @default.
- W3037074658 hasLocation W30370746582 @default.
- W3037074658 hasOpenAccess W3037074658 @default.
- W3037074658 hasPrimaryLocation W30370746581 @default.
- W3037074658 hasRelatedWork W3014300295 @default.
- W3037074658 hasRelatedWork W3164822677 @default.
- W3037074658 hasRelatedWork W4223943233 @default.