Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037076186> ?p ?o ?g. }
- W3037076186 endingPage "100033" @default.
- W3037076186 startingPage "100033" @default.
- W3037076186 abstract "The landscape, developed by the interaction of geological processes, is represented by Digital Elevation Models (DEMs) of various spatial resolutions. These DEMs can be variously analysed for the spatial and linear morphometric indices for landscape characterisation. We have developed MATLAB functions for extracting Hypsometric integral (Hi), Stream Length-gradient (SL) index, Normalized steepness index (ksn), Chi (χ) gradient index and Swath profile with maximum, minimum and mean elevation profiles from DEM. These functions are tested on SRTM DEM (30 m, 90 m spatial resolution) and ASTER GDEM (30 m spatial resolution) from three different catchments with varying tectono-geomorphic setup. The swath profile of the TRMM precipitation data is also prepared to demonstrate the application of present functions on different raster dataset and their robustness for multi-parametric correlations. The user-friendly MATLAB functions provide automation and flexibility to extract the morphometric indices cited above from DEM and other raster data with user defined variables for different tectonic-geomorphology and environmental studies." @default.
- W3037076186 created "2020-07-02" @default.
- W3037076186 creator A5021058165 @default.
- W3037076186 creator A5054541947 @default.
- W3037076186 creator A5061956546 @default.
- W3037076186 creator A5090717450 @default.
- W3037076186 date "2020-09-01" @default.
- W3037076186 modified "2023-10-06" @default.
- W3037076186 title "MATLAB functions for extracting hypsometry, stream-length gradient index, steepness index, chi gradient of channel and swath profiles from digital elevation model (DEM) and other spatial data for landscape characterisation" @default.
- W3037076186 cites W1538719650 @default.
- W3037076186 cites W1543840266 @default.
- W3037076186 cites W1574193246 @default.
- W3037076186 cites W1971955535 @default.
- W3037076186 cites W1973245627 @default.
- W3037076186 cites W1975052733 @default.
- W3037076186 cites W1981662873 @default.
- W3037076186 cites W1982383785 @default.
- W3037076186 cites W1983004991 @default.
- W3037076186 cites W1987169966 @default.
- W3037076186 cites W1994516378 @default.
- W3037076186 cites W1994694153 @default.
- W3037076186 cites W1994828817 @default.
- W3037076186 cites W2003231782 @default.
- W3037076186 cites W2012333595 @default.
- W3037076186 cites W2017353820 @default.
- W3037076186 cites W2018335334 @default.
- W3037076186 cites W2033345860 @default.
- W3037076186 cites W2040820117 @default.
- W3037076186 cites W2047661207 @default.
- W3037076186 cites W2047895895 @default.
- W3037076186 cites W2048329679 @default.
- W3037076186 cites W2048690364 @default.
- W3037076186 cites W2048731804 @default.
- W3037076186 cites W2058108138 @default.
- W3037076186 cites W2064972007 @default.
- W3037076186 cites W2070751126 @default.
- W3037076186 cites W2072190448 @default.
- W3037076186 cites W2076343412 @default.
- W3037076186 cites W2076665156 @default.
- W3037076186 cites W2078452999 @default.
- W3037076186 cites W2087884757 @default.
- W3037076186 cites W2093905602 @default.
- W3037076186 cites W2098397376 @default.
- W3037076186 cites W2105250188 @default.
- W3037076186 cites W2110828019 @default.
- W3037076186 cites W2113162852 @default.
- W3037076186 cites W2127220873 @default.
- W3037076186 cites W2144531106 @default.
- W3037076186 cites W2144789170 @default.
- W3037076186 cites W2149127647 @default.
- W3037076186 cites W2159569412 @default.
- W3037076186 cites W2487856801 @default.
- W3037076186 cites W2511329800 @default.
- W3037076186 cites W2969564162 @default.
- W3037076186 cites W2989669835 @default.
- W3037076186 cites W816694438 @default.
- W3037076186 doi "https://doi.org/10.1016/j.acags.2020.100033" @default.
- W3037076186 hasPublicationYear "2020" @default.
- W3037076186 type Work @default.
- W3037076186 sameAs 3037076186 @default.
- W3037076186 citedByCount "22" @default.
- W3037076186 countsByYear W30370761862021 @default.
- W3037076186 countsByYear W30370761862022 @default.
- W3037076186 countsByYear W30370761862023 @default.
- W3037076186 crossrefType "journal-article" @default.
- W3037076186 hasAuthorship W3037076186A5021058165 @default.
- W3037076186 hasAuthorship W3037076186A5054541947 @default.
- W3037076186 hasAuthorship W3037076186A5061956546 @default.
- W3037076186 hasAuthorship W3037076186A5090717450 @default.
- W3037076186 hasBestOaLocation W30370761861 @default.
- W3037076186 hasConcept C121684516 @default.
- W3037076186 hasConcept C127313418 @default.
- W3037076186 hasConcept C13772937 @default.
- W3037076186 hasConcept C159620131 @default.
- W3037076186 hasConcept C181843262 @default.
- W3037076186 hasConcept C181844469 @default.
- W3037076186 hasConcept C184149073 @default.
- W3037076186 hasConcept C205649164 @default.
- W3037076186 hasConcept C2524010 @default.
- W3037076186 hasConcept C33923547 @default.
- W3037076186 hasConcept C37054046 @default.
- W3037076186 hasConcept C41008148 @default.
- W3037076186 hasConcept C58640448 @default.
- W3037076186 hasConcept C62649853 @default.
- W3037076186 hasConceptScore W3037076186C121684516 @default.
- W3037076186 hasConceptScore W3037076186C127313418 @default.
- W3037076186 hasConceptScore W3037076186C13772937 @default.
- W3037076186 hasConceptScore W3037076186C159620131 @default.
- W3037076186 hasConceptScore W3037076186C181843262 @default.
- W3037076186 hasConceptScore W3037076186C181844469 @default.
- W3037076186 hasConceptScore W3037076186C184149073 @default.
- W3037076186 hasConceptScore W3037076186C205649164 @default.
- W3037076186 hasConceptScore W3037076186C2524010 @default.
- W3037076186 hasConceptScore W3037076186C33923547 @default.
- W3037076186 hasConceptScore W3037076186C37054046 @default.
- W3037076186 hasConceptScore W3037076186C41008148 @default.
- W3037076186 hasConceptScore W3037076186C58640448 @default.
- W3037076186 hasConceptScore W3037076186C62649853 @default.