Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037097725> ?p ?o ?g. }
- W3037097725 endingPage "e0234703" @default.
- W3037097725 startingPage "e0234703" @default.
- W3037097725 abstract "Organic farmers, who rely on legumes as an external nitrogen (N) source, need a fast and easy on-the-go measurement technique to determine harvestable biomass and the amount of fixed N (NFix) for numerous farm management decisions. Especially clover- and lucerne-grass mixtures play an important role in the organic crop rotation under temperate European climate conditions. Multispectral sensors mounted on unmanned aerial vehicles (UAVs) are new promising tools for a non-destructive assessment of crop and grassland traits on large and remote areas. One disadvantage of multispectral information and derived vegetations indices is, that both ignore spatial relationships of pixels to each other in the image. This gap can be filled by texture features from a grey level co-occurrence matrix. The aim of this multi-temporal field study was to provide aboveground biomass and NFix estimation models for two legume-grass mixtures through a whole vegetation period based on UAV multispectral information. The prediction models covered different proportions of legumes (0–100% legumes) to represent the variable conditions in practical farming. Furthermore, the study compared prediction models with and without the inclusion of texture features. As multispectral data usually suffers from multicollinearity, two machine learning algorithms, Partial Least Square and Random Forest (RF) regression, were used. The results showed, that biomass prediction accuracy for the whole dataset as well as for crop-specific models were substantially improved by the inclusion of texture features. The best model was generated for the whole dataset by RF with an rRMSE of 10%. For NFix prediction accuracy of the best model was based on RF including texture (rRMSEP = 18%), which was not consistent with crop specific models." @default.
- W3037097725 created "2020-07-02" @default.
- W3037097725 creator A5013871489 @default.
- W3037097725 creator A5081805904 @default.
- W3037097725 creator A5088051188 @default.
- W3037097725 date "2020-06-25" @default.
- W3037097725 modified "2023-10-03" @default.
- W3037097725 title "The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures" @default.
- W3037097725 cites W117322111 @default.
- W3037097725 cites W1831050183 @default.
- W3037097725 cites W1968134102 @default.
- W3037097725 cites W1974820932 @default.
- W3037097725 cites W1976029164 @default.
- W3037097725 cites W1977761893 @default.
- W3037097725 cites W1979109409 @default.
- W3037097725 cites W1980773748 @default.
- W3037097725 cites W1981386871 @default.
- W3037097725 cites W1987352360 @default.
- W3037097725 cites W1992156648 @default.
- W3037097725 cites W1992498641 @default.
- W3037097725 cites W2011369943 @default.
- W3037097725 cites W2019197965 @default.
- W3037097725 cites W2023045419 @default.
- W3037097725 cites W2023788490 @default.
- W3037097725 cites W2025876658 @default.
- W3037097725 cites W2027249140 @default.
- W3037097725 cites W2030467995 @default.
- W3037097725 cites W2044465660 @default.
- W3037097725 cites W2051225582 @default.
- W3037097725 cites W2059864868 @default.
- W3037097725 cites W2060546262 @default.
- W3037097725 cites W2064636932 @default.
- W3037097725 cites W2074897034 @default.
- W3037097725 cites W2076105986 @default.
- W3037097725 cites W2084320908 @default.
- W3037097725 cites W2087050759 @default.
- W3037097725 cites W2088236893 @default.
- W3037097725 cites W2090575716 @default.
- W3037097725 cites W2097989534 @default.
- W3037097725 cites W2133751300 @default.
- W3037097725 cites W2137295775 @default.
- W3037097725 cites W2139294397 @default.
- W3037097725 cites W2145982493 @default.
- W3037097725 cites W2148115499 @default.
- W3037097725 cites W2150853404 @default.
- W3037097725 cites W2153931341 @default.
- W3037097725 cites W2155657250 @default.
- W3037097725 cites W2158863190 @default.
- W3037097725 cites W2163479244 @default.
- W3037097725 cites W2168908264 @default.
- W3037097725 cites W2171265186 @default.
- W3037097725 cites W2192020007 @default.
- W3037097725 cites W2207083369 @default.
- W3037097725 cites W2261059368 @default.
- W3037097725 cites W2278057236 @default.
- W3037097725 cites W2419137750 @default.
- W3037097725 cites W2527638819 @default.
- W3037097725 cites W2592396907 @default.
- W3037097725 cites W2617056706 @default.
- W3037097725 cites W2668315191 @default.
- W3037097725 cites W2737869020 @default.
- W3037097725 cites W2741876794 @default.
- W3037097725 cites W2803315948 @default.
- W3037097725 cites W2843415492 @default.
- W3037097725 cites W2891621712 @default.
- W3037097725 cites W2900436152 @default.
- W3037097725 cites W2911730714 @default.
- W3037097725 cites W2911964244 @default.
- W3037097725 cites W2938406589 @default.
- W3037097725 cites W2946670873 @default.
- W3037097725 cites W2946896775 @default.
- W3037097725 cites W2950381058 @default.
- W3037097725 cites W2950604226 @default.
- W3037097725 cites W2964415981 @default.
- W3037097725 cites W2964782831 @default.
- W3037097725 cites W2969375592 @default.
- W3037097725 cites W4255276568 @default.
- W3037097725 doi "https://doi.org/10.1371/journal.pone.0234703" @default.
- W3037097725 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7316270" @default.
- W3037097725 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32584839" @default.
- W3037097725 hasPublicationYear "2020" @default.
- W3037097725 type Work @default.
- W3037097725 sameAs 3037097725 @default.
- W3037097725 citedByCount "36" @default.
- W3037097725 countsByYear W30370977252020 @default.
- W3037097725 countsByYear W30370977252021 @default.
- W3037097725 countsByYear W30370977252022 @default.
- W3037097725 countsByYear W30370977252023 @default.
- W3037097725 crossrefType "journal-article" @default.
- W3037097725 hasAuthorship W3037097725A5013871489 @default.
- W3037097725 hasAuthorship W3037097725A5081805904 @default.
- W3037097725 hasAuthorship W3037097725A5088051188 @default.
- W3037097725 hasBestOaLocation W30370977251 @default.
- W3037097725 hasConcept C108215451 @default.
- W3037097725 hasConcept C115540264 @default.
- W3037097725 hasConcept C118518473 @default.
- W3037097725 hasConcept C119857082 @default.
- W3037097725 hasConcept C120217122 @default.