Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037097767> ?p ?o ?g. }
- W3037097767 abstract "Data-driven methods -- such as machine learning and time series forecasting -- are widely used for sales forecasting in the food retail domain. However, for newly introduced products insufficient training data is available to train accurate models. In this case, human expert systems are implemented to improve prediction performance. Human experts rely on their implicit and explicit domain knowledge and transfer knowledge about historical sales of similar products to forecast new product sales. By applying the concept of Transfer Learning, we propose an analytical approach to transfer knowledge between listed stock products and new products. A network-based Transfer Learning approach for deep neural networks is designed to investigate the efficiency of Transfer Learning in the domain of food sales forecasting. Furthermore, we examine how knowledge can be shared across different products and how to identify the products most suitable for transfer. To test the proposed approach, we conduct a comprehensive case study for a newly introduced product, based on data of an Austrian food retailing company. The experimental results show, that the prediction accuracy of deep neural networks for food sales forecasting can be effectively increased using the proposed approach." @default.
- W3037097767 created "2020-07-02" @default.
- W3037097767 creator A5022910330 @default.
- W3037097767 creator A5065193948 @default.
- W3037097767 creator A5071819311 @default.
- W3037097767 creator A5083001437 @default.
- W3037097767 date "2020-05-13" @default.
- W3037097767 modified "2023-09-27" @default.
- W3037097767 title "A network-based transfer learning approach to improve sales forecasting of new products" @default.
- W3037097767 cites W111251943 @default.
- W3037097767 cites W124349154 @default.
- W3037097767 cites W1276866904 @default.
- W3037097767 cites W1522301498 @default.
- W3037097767 cites W1541456620 @default.
- W3037097767 cites W1570448133 @default.
- W3037097767 cites W1582774210 @default.
- W3037097767 cites W1705374184 @default.
- W3037097767 cites W1977177161 @default.
- W3037097767 cites W1981553219 @default.
- W3037097767 cites W1984727419 @default.
- W3037097767 cites W1986614398 @default.
- W3037097767 cites W2038299574 @default.
- W3037097767 cites W2047469138 @default.
- W3037097767 cites W2079484041 @default.
- W3037097767 cites W2085574158 @default.
- W3037097767 cites W2095705004 @default.
- W3037097767 cites W2101234009 @default.
- W3037097767 cites W2105182730 @default.
- W3037097767 cites W2153844210 @default.
- W3037097767 cites W2154395974 @default.
- W3037097767 cites W2163345210 @default.
- W3037097767 cites W2164114810 @default.
- W3037097767 cites W2165698076 @default.
- W3037097767 cites W2170391700 @default.
- W3037097767 cites W2213612645 @default.
- W3037097767 cites W2250209300 @default.
- W3037097767 cites W2253429366 @default.
- W3037097767 cites W2290581889 @default.
- W3037097767 cites W2395579298 @default.
- W3037097767 cites W2399499565 @default.
- W3037097767 cites W2488884246 @default.
- W3037097767 cites W2523862786 @default.
- W3037097767 cites W2539215911 @default.
- W3037097767 cites W2607493159 @default.
- W3037097767 cites W2616881109 @default.
- W3037097767 cites W2645206747 @default.
- W3037097767 cites W2739233238 @default.
- W3037097767 cites W2746739913 @default.
- W3037097767 cites W2792046648 @default.
- W3037097767 cites W2802879067 @default.
- W3037097767 cites W2808163457 @default.
- W3037097767 cites W2891898214 @default.
- W3037097767 cites W2898843852 @default.
- W3037097767 cites W2907164325 @default.
- W3037097767 cites W2911858796 @default.
- W3037097767 cites W2949667497 @default.
- W3037097767 cites W2951421936 @default.
- W3037097767 cites W2952139439 @default.
- W3037097767 cites W3013818017 @default.
- W3037097767 cites W613690151 @default.
- W3037097767 hasPublicationYear "2020" @default.
- W3037097767 type Work @default.
- W3037097767 sameAs 3037097767 @default.
- W3037097767 citedByCount "0" @default.
- W3037097767 crossrefType "posted-content" @default.
- W3037097767 hasAuthorship W3037097767A5022910330 @default.
- W3037097767 hasAuthorship W3037097767A5065193948 @default.
- W3037097767 hasAuthorship W3037097767A5071819311 @default.
- W3037097767 hasAuthorship W3037097767A5083001437 @default.
- W3037097767 hasConcept C108583219 @default.
- W3037097767 hasConcept C119857082 @default.
- W3037097767 hasConcept C127413603 @default.
- W3037097767 hasConcept C134306372 @default.
- W3037097767 hasConcept C144133560 @default.
- W3037097767 hasConcept C150899416 @default.
- W3037097767 hasConcept C154945302 @default.
- W3037097767 hasConcept C162853370 @default.
- W3037097767 hasConcept C193809577 @default.
- W3037097767 hasConcept C204036174 @default.
- W3037097767 hasConcept C207685749 @default.
- W3037097767 hasConcept C2524010 @default.
- W3037097767 hasConcept C2776960227 @default.
- W3037097767 hasConcept C2984642479 @default.
- W3037097767 hasConcept C33923547 @default.
- W3037097767 hasConcept C36503486 @default.
- W3037097767 hasConcept C41008148 @default.
- W3037097767 hasConcept C42475967 @default.
- W3037097767 hasConcept C50644808 @default.
- W3037097767 hasConcept C56739046 @default.
- W3037097767 hasConcept C78519656 @default.
- W3037097767 hasConcept C90673727 @default.
- W3037097767 hasConceptScore W3037097767C108583219 @default.
- W3037097767 hasConceptScore W3037097767C119857082 @default.
- W3037097767 hasConceptScore W3037097767C127413603 @default.
- W3037097767 hasConceptScore W3037097767C134306372 @default.
- W3037097767 hasConceptScore W3037097767C144133560 @default.
- W3037097767 hasConceptScore W3037097767C150899416 @default.
- W3037097767 hasConceptScore W3037097767C154945302 @default.
- W3037097767 hasConceptScore W3037097767C162853370 @default.
- W3037097767 hasConceptScore W3037097767C193809577 @default.